Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2
=>a2x2+a2y2+a2z2+b2x2+b2y2+b2z2+c2x2+
c2y2+c2z2=a2x2+b2y2+c2z2+2axby+2axcz+
2bycz
=>a2y2+a2z2+b2x2+b2z2+c2x2+c2y2-2axby-2axcz-2bycz=0
=>(a2y2-2axby+b2x2)+(a2z2-2axcz+c2x2)+
(b2z2-2bycz+c2y2)=0
=>(ay-bx)2+(az-cx)2+(bz-cy)2=0
Vì (ay-bx)2\(\ge0\);(az-cx)2\(\ge0\);(bz-cy)2\(\ge0\)
nên =>(ay-bx)2+(az-cx)2+(bz-cy)2\(\ge0\)
Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}ay=bx\\az=cx\\bz=cy\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{a}{x}=\dfrac{c}{z}\\\dfrac{b}{y}=\dfrac{c}{z}\end{matrix}\right.\)=>\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)(x;y;z\(\ne0\))
cái chỗ dấu = xảy ra khi... cậu viết rõ hơn đc k? tớ ms vào nên k biết kí hiệu này lắm
Ta có : \(\dfrac{\left(ax+by+cz\right)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
\(\Leftrightarrow\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz=a^2x^2+b^2x^2+c^2x^2+a^2y^2+b^2y^2+c^2y^2+a^2z^2+b^2z^2+c^2z^2\)
\(\Leftrightarrow2axby+2axvz+2bycz=a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2\)
\(\Leftrightarrow a^2y^2+b^2x^2+a^2z^2+c^2x^2+b^2z^2+c^2y^2-2axby-2azcx-2bycz=0\)
\(\Leftrightarrow\left(a^2y^2-2axby+b^2x^2\right)+\left(a^2z^2-2azcx+c^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(az-cx\right)^2+\left(bz-cy\right)^2=0\)
Do \(\left(ay-bx\right)^2\ge0;\left(az-cx\right)^2\ge0;\left(bz-cy\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\az-cx=0\\bz-cy=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\az=cx\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\)
\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\left(đpcm\right)\)
:D
ta có x+y+z=0 =>x^2=(y+z)^2
y^2=(x+z)^2
z^2=(x+y)^2
do đó ax^2+by^2+cz^2
=a(y+z)^2+b(x+z)^2+c(x+y)^2
=a(y^2+2yz+z^2)+b(x^2+2xz+z^2)
+c(x^2+2xy+y^2)
=x^2(b+c)+y^2(a+c)+z^2(a+b)
+2(ayz+bxz+cxy) (1)
thay b+c=-a ,a+c=-b , a+b=-c do a+b+c=0
và ayz+bxz+cxy=0 do a/x+b/y+c/z=0 vào (1) ta được
ax^2+by^2+cz^2 = -(ax^2+by^2+cz^2)
=> ax^2+by^2+cz^2=0
Ta có:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{a+b}{x+y}=0\Leftrightarrow ay\left(x+y\right)+bx\left(x+y\right)+xy\left(a+b\right)=0\)
\(\Leftrightarrow axy+ay^2+bx^2+bxy+axy+bxy=0\)
\(\Leftrightarrow ay^2+2axy+2bxy+bx^2=0\)
Vậy:
\(ax^2+by^2+cz^2=ax^2+by^2-\left(a+b\right)\left(x+y\right)^2\)
\(=ax^2+by^2-\left(ax^2+2axy+ay^2+bx^2+2bxy+by^2\right)\)
\(=-\left(ay^2+2axy+2bxy+by^2\right)=-0=0\)
1) Đặt \(B=x^2+y^2+z^2\)
\(C=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
Ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow-2\left(xy+yz+xz\right)=x^2+y^2+z^2\)
Suy ra: \(C=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2=3\left(x^2+y^2+z^2\right)\)
\(\Rightarrow A=\dfrac{B}{C}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
2) \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Do \(x+y\ne0\) nên \(x-2y=0\Leftrightarrow x=2y\)
Do đó: \(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
Giả sử x/a=y/b=z/c=k
=>x=ak; y=bk; z=ck
\(\left(ax+by+cz\right)^2\)
\(=\left(a^2k+b^2k+c^2k\right)^2\)
\(=k^2\cdot\left(a^2+b^2+c^2\right)^2\)
\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
\(=\left(a^2+b^2+c^2\right)\left(k^2a^2+k^2b^2+k^2c^2\right)\)
\(=k^2\left(a^2+b^2+c^2\right)^2\)
Do đó: \(\left(ax+by+cz\right)^2=\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)