Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3\le ab\left(a+b\right)\) (1)
\(\Leftrightarrow a^3+b^3-ab\left(a+b\right)\le0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\le0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\le0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\le0\)
Vì \(a\le0;b\le0\Rightarrow a+b\le0;\left(a-b\right)^2\ge0\forall a;b\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)^2\le0\forall a;b\le0\)
\(\Rightarrow\) BĐT (1) luôn đúng \(\forall a;b\le0\)
Vậy \(a^3+b^3\le ab\left(a+b\right)\)
Từ a+b+c=6 \(\Rightarrow\)a+b=6-c
Ta có: ab+bc+ac=9\(\Leftrightarrow\)ab+c(a+b)=9
\(\Leftrightarrow\)ab=9-c(a+b)
Mà a+b=6-c (cmt)
\(\Rightarrow\)ab=9-c(6-c)
\(\Rightarrow\)ab=9-6c+c2
Ta có: (b-a)2\(\ge\)0 \(\forall\)b, c
\(\Rightarrow\)b2+a2-2ab\(\ge\)0
\(\Rightarrow\)(b+a)2-4ab\(\ge\)0
\(\Rightarrow\)(a+b)2\(\ge\)4ab
Mà a+b=6-c (cmt)
ab= 9-6c+c2 (cmt)
\(\Rightarrow\)(6-c)2\(\ge\)4(9-6c+c2)
\(\Rightarrow\)36+c2-12c\(\ge\)36-24c+4c2
\(\Rightarrow\)36+c2-12c-36+24c-4c2\(\ge\)0
\(\Rightarrow\)-3c2+12c\(\ge\)0
\(\Rightarrow\)3c2-12c\(\le\)0
\(\Rightarrow\)3c(c-4)\(\le\)0
\(\Rightarrow\)c(c-4)\(\le\)0
\(\Rightarrow\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}}\)hoặc\(\hept{\begin{cases}c\le0\\c-4\ge0\end{cases}}\)
*\(\hept{\begin{cases}c\ge0\\c-4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}c\ge0\\c\le4\end{cases}\Leftrightarrow}0\le c\le4}\)
*
Ta có
a2 + b2 \(\ge2ab\)
<=> \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
<=> \(4\ge\left(a+b\right)^2\)
<=> \(-2\le a+b\le2\)
=> ĐPCM
từ giả thuyết suy ra : abc >0
có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0
\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0
\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)
Cộng a2+b2+c2 vào (1)
2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2
(a+b+c)2-4\(\ge\)a2+b2+c2
thay a+b+c=3 vào
9-4\(\ge\)a2+b2+c2
5 \(\ge\)a2+b2+c2
a2+b2+c2 \(\le\)5
\(a^2-a+2b+4b^2-4ab\le0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)-\left(a-2b\right)\le0\)
\(\Leftrightarrow\left(a-2b\right)^2-\left(a-2b\right)\le0\)
\(\Leftrightarrow\left(a-2b\right)\left(a-2b-1\right)\le0\)
Mà \(a-2b>a-2b-1\) nên \(\hept{\begin{cases}a-2b\ge0\\a-2b-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}a-2b\ge0\\a-2b\le1\end{cases}}}\)
\(\Rightarrow0\le a-2b\le1\) (đpcm)