K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2015

Lạnh Lạnh đúng vì;

\(a+\frac{1}{a}=a+\frac{9}{a}-\frac{8}{a}\ge2\sqrt{a.\frac{9}{a}}-\frac{8}{3}=2.3-\frac{8}{3}=\frac{10}{3}\)

Dấu "=" xảy ra khi và chỉ khi a=3

vậy min S=10/3 tại a=3

25 tháng 4 2015

=10/3    .. bạn nghĩ sao

 

8 tháng 7 2016

\(A=\frac{2010x+2680}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=2010x+2680\Leftrightarrow Ax^2-2010x+\left(A-2680\right)=0\)

  • Với x = 0 => A = 2680
  • Với \(x\ne0\), xét \(\Delta'=1005^2-A\left(A-2680\right)=-A^2+2680A+1005^2\)

Để A có nghiệm, ta phải có \(\Delta'\ge0\Leftrightarrow-A^2+2680A+1005^2\ge0\Leftrightarrow-335\le A\le3015\)

Vậy Min A = -335 \(\Leftrightarrow x=-3\)

1 tháng 11 2017

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

4 tháng 12 2017

cac chi can tra loi cau c cung dc

22 tháng 3 2019

Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)

\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)

Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)

"="<=>a=b=c=3

21 tháng 9 2018

\(T_{min}=\frac{2715}{8}\) tại \(a=b=\frac{1}{2}\)

22 tháng 9 2018

\(T=\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)

\(=\frac{19}{ab}+\frac{6}{a^2+b^2}+304\left(a^4+b^4+\frac{1}{16}+\frac{1}{16}\right)+48\left(a^4+\frac{1}{16}\right)+48\left(b^4+\frac{1}{16}\right)+1659\left(a^4+b^4\right)-44\)

\(\ge\frac{19}{ab}+\frac{6}{a^2+b^2}+304ab+24\left(a^2+b^2\right)+1659.\frac{\left(\frac{\left(a+b\right)^2}{2}\right)^2}{2}-44\)

\(=\left(\frac{19}{ab}+304ab\right)+\left(\frac{6}{a^2+b^2}+24\left(a^2+b^2\right)\right)+\frac{1307}{8}\)

\(\ge152+24+\frac{1307}{8}=\frac{2715}{8}\)