Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b^2\)= \(ac\)=> \(\frac{a}{b}\)= \(\frac{b}{c}\)(1)
\(c^2\)= \(bd\)=> \(\frac{b}{c}\)= \(\frac{c}{d}\)(2)
từ (1) và (2) => \(\frac{a}{b}\)= \(\frac{b}{c}\)= \(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)= \(\frac{a}{b}\)* \(\frac{b}{c}\)* \(\frac{c}{d}\)= \(\frac{a}{d}\) (*)
\(\frac{a^3}{b^3}\)= \(\frac{b^3}{c^3}\)= \(\frac{c^3}{d^3}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (**)
Từ (*) và (**) => \(\frac{a}{d}\)= \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) (đpcm)
Bài 1 :
7^6+7^5-7^4=7^4.49+7^4.7-7^4.1
=7^4.(49+7-1)
=7^4.55
Vì 7^4.55 chia hết 5 Vậy 7^6+7^5-7^4 chia hết 5
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt: \(\dfrac{a}{c}=\dfrac{b}{d}=t\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\left(\dfrac{a+b}{c+d}\right)^3=t^3\)
\(\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3-b^3}{c^3-d^3}=t^3\)
Ta có đpcm
Ta có : a/b=b/c=c/d
AD tính chất của dãy tỉ số bằng nhau ta có :
a/b=b/c=c/d=a+b+c/b+c+d
=> (a/b)^3=(a+b+c/b+c+d)^3 (1)
Mà (a/b)^3=a.b.c/b.c.d (2)
Từ (1);(2) => a^3 + b^3 + c^3 / b^3 + c^3 + d^3 = a/d (đpcm)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
\(\hept{\begin{cases}a=bk\\b=ck\\c=dk\end{cases}=>\hept{\begin{cases}a=dk^3\\b=dk^2\\c=dk\end{cases}}}\)
Ta có VT=\(\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{d^3.k^9+d^3k^6-d^3.k^3}{d^3.k^6+d^3.k^3-d^3}=\frac{d^3.k^3.\left(k^6+k^3-1\right)}{d^3.\left(k^6+k^3-1\right)}=k^3\)
Lại có VP\(=\frac{a}{d}=\frac{d.k^3}{d}=k^3\)
=> ĐPCM
Ta có a/c=c/b=b/d
⟹a3 /c3=c3/b3=b3/d3=a3+c3-d3/c3+b3-d3
mà a3/c3=a/c.c/b.b/d=a/d
⟹a3+c3-d3/c3+b3-d3=a/d