K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta biến đổi tương đương: 
a/b + b/a >= 2 
<=> (a^2+b^2)/ab >=2 
<=> a^2+b^2>=2ab 
<=> a^2-2ab+b^2>=0 
<=> (a-b)^2 >= 0 (*) 
Biểu thức (*) đúng

tích

15 tháng 4 2016

Bài này dễ mà bạn !!!

26 tháng 4 2017

Gọi b = a + k (k \(\in\) Z, k \(\ne\) -a)

\(\dfrac{a}{b}>0\)

Ta có:

\(\dfrac{a}{a+k}+\dfrac{a+k}{a}\\ =\dfrac{a^2}{a\cdot\left(a+k\right)}+\dfrac{\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a^2+2ak+k^2\right)}{a^2+ak}\\ =\dfrac{a^2+a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =\dfrac{2\cdot\left(a^2+ak\right)}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =2+\dfrac{k^2}{a^2+ak}>2\)

Vậy \(\dfrac{a}{a+k}+\dfrac{a+k}{a}>2\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}>2\left(đpcm\right)\)

27 tháng 4 2017

Sai! CMR: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) mà?

Vào đây đi:

dfrac{a}{b}+\dfrac{b}{a - Hoc24

12 tháng 4 2018

\(ab+ba\)

\(=ab.ab\)

\(=2ab\)

Vì a.b>0

\(\Rightarrow ab\ge1\Rightarrow2ab\ge2\)

Vậy..............

k mk nha

12 tháng 4 2018

Cho a = 0,1, b = 0,2 thì ab + ba = 0,02 + 0,02 = 0,04 < 2

ĐỀ SAI

22 tháng 7 2015

Làm nhanh trong ngày hôm nay và ngày mai hộ mình nha 

trân thành cảm ơn 

1 tháng 6 2017

Không mất tính tổng quát, giả sử a \(\ge\)

\(\Rightarrow\) a = b + m ( m \(\ge\)0 )

Ta có :  \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

Dấu " = " chỉ xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\)a = b 

1 tháng 6 2017

Ta có: \(\frac{a}{b}>0\Rightarrow\) a và b cùng dấu \(\Rightarrow\frac{b}{a}>0\)

Áp dụng bất đẳng thức cô si ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

Dấu bằng xẩy ra khi và chỉ khi \(\frac{a}{b}=\frac{b}{a}\Leftrightarrow a^2=b^2\Leftrightarrow a=b\)

30 tháng 3 2018

Áp dụng bất đẳng thức Cauchy có: \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\sqrt{1}=2\)

=> \(\frac{a}{b}+\frac{b}{a}\ge2\)