Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi b = a + k (k \(\in\) Z, k \(\ne\) -a)
\(\dfrac{a}{b}>0\)
Ta có:
\(\dfrac{a}{a+k}+\dfrac{a+k}{a}\\ =\dfrac{a^2}{a\cdot\left(a+k\right)}+\dfrac{\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a+k\right)^2}{a\cdot\left(a+k\right)}\\ =\dfrac{a^2+\left(a^2+2ak+k^2\right)}{a^2+ak}\\ =\dfrac{a^2+a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak+k^2}{a^2+ak}\\ =\dfrac{2a^2+2ak}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =\dfrac{2\cdot\left(a^2+ak\right)}{a^2+ak}+\dfrac{k^2}{a^2+ak}\\ =2+\dfrac{k^2}{a^2+ak}>2\)
Vậy \(\dfrac{a}{a+k}+\dfrac{a+k}{a}>2\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}>2\left(đpcm\right)\)
Sai! CMR: \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) mà?
Vào đây đi:
dfrac{a}{b}+\dfrac{b}{a - Hoc24
\(ab+ba\)
\(=ab.ab\)
\(=2ab\)
Vì a.b>0
\(\Rightarrow ab\ge1\Rightarrow2ab\ge2\)
Vậy..............
k mk nha
Cho a = 0,1, b = 0,2 thì ab + ba = 0,02 + 0,02 = 0,04 < 2
ĐỀ SAI
Không mất tính tổng quát, giả sử a \(\ge\)b
\(\Rightarrow\) a = b + m ( m \(\ge\)0 )
Ta có : \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)
\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)
Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)
Dấu " = " chỉ xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\)a = b
Ta có: \(\frac{a}{b}>0\Rightarrow\) a và b cùng dấu \(\Rightarrow\frac{b}{a}>0\)
Áp dụng bất đẳng thức cô si ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)
Dấu bằng xẩy ra khi và chỉ khi \(\frac{a}{b}=\frac{b}{a}\Leftrightarrow a^2=b^2\Leftrightarrow a=b\)
Để \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
<=> \(\dfrac{a}{b}+\dfrac{b}{a}-2\ge0\)
<=> \(\dfrac{a^2-2ab+b^2}{ab}\ge0\)
<=> \(\dfrac{\left(a-b\right)^2}{ab}\ge0\)
Mà \(\left(a-b\right)^2\ge0\)
\(\dfrac{a}{b}>0\) <=> ab > 0
=> đpcm
Dấu "=" xảy ra <=> a = b
Bài 1:
a/ \(\frac{6}{7}.x=-\frac{5}{28}\)
\(x=-\frac{5}{28}:\frac{6}{7}=-\frac{5}{28}.\frac{7}{6}\)
\(x=\frac{-5}{24}\)
b/ \(\frac{2}{5}+\frac{1}{4}.x=-0,3\)
\(\frac{2}{5}+\frac{1}{4}.x=\frac{3}{10}\)
\(\frac{1}{4}.x=\frac{3}{10}-\frac{2}{5}=\frac{3}{10}-\frac{4}{10}\)
\(\frac{1}{4}.x=-\frac{1}{10}\)
\(x=-\frac{1}{10}:\frac{1}{4}=-\frac{1}{10}.\frac{4}{1}\)
\(x=-\frac{4}{10}\)
CMR : a2 lớn hơn hoặc bằng 0
Nếu a là 0 thì a2 = 0
Nếu a ∈ N* thì a2 > 0
☛ Vậy a ∈ N thì a2 ≥ 0
CMR : -a2 bé hơn hoặc bằng 0
Nếu a là 0 thì -a2 = 0
Nếu a ∈ N* thì -a2 < 0
☛ Vậy a ∈ N thì -a2 ≤ 0
*Trường hợp 1: a≠0
Ta có: \(a^2=a\cdot a=\left(-a\right)\cdot\left(-a\right)\)
Vì hai số cùng dấu nhân với nhau luôn ra số dương nên \(a^2>0\forall a\ne0\)(1)
*Trường hợp 2: a=0
Ta có: \(a^2=0^2=0\)
Do đó, \(a^2=0\forall a=0\)(2)
Từ (1) và (2) suy ra \(a^2\ge0\forall a\)
\(-a^2\le0\forall a\)