K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ban oi a^2+b^2+c^2= a^2+b^2+c^2 là chuyện đương nhiên mà bạn

22 tháng 12 2019

quên là (a+b+c)2=a2+b2+c2    xin lỗi nha

bạn kiếm kiểu gì cx ko có ai giải đâu, đề này sai r, nãy mình sửa mới đúng

Bài 1:

a)    \(x^3-5x^2+8x-4\)

\(=x^3-4x^2+4x-x^2+4x-4\)  \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)

b) Ta có:  \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)

   Với \(x\in Z\)thì  \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)

17 tháng 8 2019

Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.

Bài 1:

a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4

=x(x2-4x-4)-(x2-4x+4)

=(x-1) (x-2)2

b)Xét:

\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)

=\(5x+4+\frac{7}{2x-3}\)

Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc  Z => 7 /\ (2x-3)

Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B

c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)

=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)

=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)

=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)

=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh

Bài 2 )

a)(x2+x)2+4(x2+x)=12 đặt y=x2+x

   y2+4y-12=0 <=>y2+6y-2y-12=0

<=>(y+6)(y-2)=0 <=> y=-6;y=2

>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x

>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0

<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=>  x=-2;x-1

Vậy nghiệm của phương trình x=-2;x=1

b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)

=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)

Nhờ OLM xét giùm em vs ạ !

19 tháng 2 2018

Áp dụng bất đẳng thức Cô-si ta có : 

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)

Dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) Hay \(a=b=c\) ( đề cho ) 

Vậy ta có đpcm : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

19 tháng 2 2018

Bạn ơi đề cho : a=b=c hay \(\left(a+b+c\right)^2=a^2+b^2+c^2\) 

10 tháng 7 2016

Ta có:

\(a^3+b^3+c^3=3abc=>a^3+b^3+c^3-3abc=0\)

\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(=>\left[\left(a+b\right)^3+c^3\right]-3a^2b-3ab^2-3abc=0\)

\(=>\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)

\(=>\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(=>\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)=0\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Vì a3+b3+c3=3abc và a+b+c khác 0

=>\(a^2+b^2+c^2-ab-bc-ca=0\)

\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tổng 3 số không âm = 0 <=> chúng đều = 0

\(< =>\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>a=b=c}\)

Vậy \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)

\(\)

10 tháng 7 2016

Ta có ; \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Vì \(a+b+c\ne0\) nên ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

a) Thay a = b = c vào biểu thức được : \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

b) Thay a = b = c vào P : \(P=\frac{2}{a}.\frac{2}{b}\frac{2}{c}=\frac{8}{abc}\)