K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

Giả sử không có BĐT thức nào có nghiệm. Khi đó:

\(\Delta_1=\left(2b\right)^2-4ac=4b^2-4ac< 0\Leftrightarrow b^2< ac\left(1\right)\)

\(\Delta_2=\left(2c\right)^2-4ab=4c^2-4ab< 0\Leftrightarrow c^2< ab\left(2\right)\)

\(\Delta_3=\left(2a\right)^2-4bc=4a^2-4bc< 0\Leftrightarrow a^2< bc\left(3\right)\)

Từ (1), (2), (3) suy ra b2 . c2 . a2 < ac . ab . bc (Vì các vế của chúng đều phải dương)

\(\Leftrightarrow\left(abc\right)^2< \left(abc\right)^2\), vô lí

Do đó giả thiết sai. Vậy ít nhất một trong 3 BĐT có nghiệm

8 tháng 10 2020

Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)

Áp dụng BĐT B.C.S:

\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)

Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)

Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)

\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)

Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)

4 tháng 9 2021

ai đó giúp mình với :((

22 tháng 2 2016

a) \(\begin{cases}x^2-5x+6<0\\ax+4<0\end{cases}\)

bất phương trình đầu có nghiệm là 1 < x < 6

Xét a = 0 => bpt thứ hai vô nghiệm (4 < 0) => Hệ vô nghiệm

Xét a > 0 => bpt thứ hai có nghiệm là x < -4/a < 0 => kết hợp với 1 < x < 6 thì hệ vô nghiệm

Xét a < 0 => bpt thứ hai có nghiệm là x > -4/a. Kết hợp với 1 < x < 6 thì để hệ có nghiệm thì -4/a <6 => -4 > 6a => a < -4/6 = -2/3, thỏa mãn đk a <0

ĐS: a < -2/3

b) bpt thứ nhất có nghiệm là x > 1.

bpt thứ hai có dạng: (x - a)2 +1 - a2 < 0; (x - a)2 < a2 - 1

Nếu a2 - 1 < 0, tức là -1 < a < 1 thì bpt trên vô nghiệm,

Nếu a < -1 hoặc a > 1 thì bpt trên có nghiệm là \(-\sqrt{a^2-1}+a\le x\le\sqrt{a^2-1}+a\)

Kết hợp với nghiệm x > 1 thì để hệ có nghieemh ta phải có \(\sqrt{a^2+1}+a>1\) => \(\sqrt{a^2+1}>1-a\), nếu a>1 thì luôn đúng, còn nếu a < -1 thì a2 + 1 > 1 - 2a + a2 =>a >0 (mâu thuẫn với a < -1)

KL: với a > 1 thì hệ bpt có nghiệm

4 tháng 9 2021

ai đó giúp mình với mình còn 3 tiếng nữa là tới hạn nộp bài rồi :(((

4 tháng 9 2021

bloody hell còn 2 tiếng nữa thôi pls send help

4 tháng 9 2021

ban  nham  roi   vi   khong  phai  nhu  the  dau  nen  ban  sai  roi. 

30 tháng 3 2020

mng :<