K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

\(\frac{3}{a+2b}=\frac{1}{3}.\frac{9}{a+b+b}\le\frac{1}{3}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)

Tương tự:\(\frac{3}{b+2c}\le\frac{1}{3}\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)\)

Cộng theo vế ta được:

\(\frac{3}{a+2b}+\frac{3}{b+2c}+\frac{3}{c+2a}\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

7 tháng 8 2017

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\), ta có:

\(\dfrac{4}{2a+b+c}+\dfrac{4}{a+2b+c}+\dfrac{4}{a+b+2c}\)

\(\le\dfrac{1}{4}\left(\dfrac{4}{a+b}+\dfrac{4}{a+c}+\dfrac{4}{a+b}+\dfrac{4}{c+b}+\dfrac{4}{a+c}+\dfrac{4}{b+c}\right)\)

\(=\dfrac{2}{a+b}+\dfrac{2}{a+c}+\dfrac{2}{b+c}\)

\(\le\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{a}+\dfrac{2}{c}+\dfrac{2}{b}+\dfrac{2}{c}\right)\)

\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c

27 tháng 7 2017

Áp dụng cái này nha!:
a²/x + b²/y + c²/z +d²/t ≥ (a + b +c +d)²/(x + y + z + t) (wen thuộc)
1/a + 1/b + 1/b + 1/c ≥ 16/(a + 2b +c)
1/a + 1/b + 1/c + 1/c ≥ 16/(a + b +2c)
1/a + 1/a + 1/b + 1/c ≥ 16/(2a + b +c)
Cộng 3 vế lại:
1/a + 1/b +1/c ≥ 4[1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)]
⇔ ¼ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)
⇒ ½ (1/a + 1/b +1/c) ≥ ¼ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)
⇔ ½ (1/a + 1/b +1/c) ≥ 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)
Dấu = xra khi a = b = c và 1/a + 1/b +1/c = 0
⇒ dấu = không xảy ra.
⇒ ½ (1/a + 1/b +1/c) > 1/(a+2b+c) + 1/(b+2c+a) + 1/(c+2a+b)

28 tháng 7 2017

T sợ lớp 8 có đứa chưa biết Cauchy-Schwarz

27 tháng 7 2017

Áp dụng bđt Cauchuy - Schwarz dưới dạng Engel ta có :

\(P=\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}\)

\(=\frac{9}{4\left(a+b+c\right)}\ge\frac{9}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Vậy \(N_{min}=\frac{9}{4}\) tại \(a=b=c=\frac{1}{3}\)