Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Thêm đk a > b > 0
\(VT=a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Áp dụng BĐT Cô si cho 3 số dương ta có đpcm.
Đẳng thức xảy ra khi \(a-b=b=\frac{1}{b\left(a-b\right)}\Leftrightarrow a=2;b=1\)
Bài 2: BĐT \(\Leftrightarrow\left(a-b\right)+\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (Thêm 1 vào hai vế +bớt + thêm b)
\(\Leftrightarrow\left(a-b\right)+\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)+\frac{4}{\left(a-b\right)\left(b+1\right)^2}\ge4\) (tách \(b+1=\frac{1}{2}\left(b+1\right)+\frac{1}{2}\left(b+1\right)\))
Áp dụng BĐT Cô si cho 4 số dương ta thu được đpcm.
Đẳng thức xảy ra khi \(a-b=\frac{1}{2}\left(b+1\right)=\frac{4}{\left(a-b\right)\left(b+1\right)^2}\)
\(\Leftrightarrow a=2;b=1\) (chị giải rõ ra nha, em làm tắt thôi)
Bài 3 để sau ạ, có lẽ cần thêm đk b > 0. Khi đó a/ b > 1 tức là a > b và > 0
Dự đoán điểm rơi tại a = 1; b = 1/2
Em nghĩ ra rồi nhưng ko chắc đâu.
Bài 3: Dễ thấy b > 0 => a > b > 0
Trước tiên cần giảm bậc cái đã:D
\(2a^3+1=a^3+a^3+1\ge3\sqrt[3]{a^6.1}=3a^2\)
Đẳng thức xảy ra khi a = 1 (1)
Do vậy: \(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3a^2}{4ab-4b^2}\). Do a > b > 0. Chia hai vế cho b2 ta được:
\(\frac{2a^3+1}{4b\left(a-b\right)}\ge\frac{3\left(\frac{a}{b}\right)^2}{4.\frac{a}{b}-4}=\frac{3t^2}{4t-4}\) với \(t=\frac{a}{b}>1\)
Ta cần chứng minh \(\frac{3t^2}{4t-4}\ge3\Leftrightarrow\frac{t^2}{4t-4}\ge1\Leftrightarrow t^2-4t+4\ge0\Leftrightarrow\left(t-2\right)^2\ge0\) (đúng)
Đẳng thức xảy ra khi a = 2b tức là theo (1) suy ra \(b=\frac{1}{2}\)
Ta có đpcm.
a)Bạn đặt A = a/ (1 + a^2). => A + a^2A = a => a^2A - a + A = 0. ta có delta = 1 - 4A^2 ( gọi ẩn số là a). => để pt có nghiệm <=> 1 - 4A^2 >= 0 => để phương trình có nghiệm => 1 - 4A^2 >= 0 => 1 >= 4A^2 => A =< 1/2. => max A = 1/2. bạn giải tương tự B = b/(1+b^2), C = c/(1 + c^2) rồi cộng vào nhau là ra ngay thôi. Đây là cách giải bằng delta.
b)bạn có (a^2 - b^2)/c = ((a+b)(a-b))/c >= (c + c)(a-b)/c = 2(a - b). Bạn có c =< b ( theo đề bài) = > c + b =< 2b => (c + b) =<2b => (c + b)/b <= 2 => (c + b)/a <= 2. từ đó ta có (c^2 - b^2)/a = (c -b )(c + b)/a >= 2(c - b).
chứng minh tương tự:(a + c)/b > 1 => (a^2 - c^2)/b >= a - c.( sr ngại gõ lắm) => cộng 3 vế ta được đpcm
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
a)Từ \(a+b+c\ge ab+bc+ca\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) *đúng*
Khi \(a=b=c\)
b)Áp dụng BĐT AM-GM ta có:
\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)
Tương tự rồi cộng theo vế :
\(M\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
Khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{4}{a}+\frac{1}{4b}=\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{a}+\frac{1}{4b}\geq \frac{(1+1+1+1+1)^2}{a+a+a+a+4b}\)
\(\Leftrightarrow P\geq \frac{25}{4(a+b)}=\frac{25}{4.\frac{5}{4}}=5\)
Vậy $P_{\min}=5$. Giá trị này đạt được tại $a=1; b=\frac{1}{4}$
Cách khác
Áp dụng BĐT Bunhiacopxki :
\(\left(a+b\right)\left(\frac{4}{a}+\frac{1}{4b}\right)\ge\left(\sqrt{a}\cdot\frac{2}{\sqrt{a}}+\sqrt{b}\cdot\frac{1}{2\sqrt{b}}\right)^2\)
\(\Leftrightarrow\frac{5}{4}\cdot\left(\frac{4}{a}+\frac{1}{4b}\right)\ge\left(2+\frac{1}{2}\right)^2\)
\(\Leftrightarrow\frac{5}{4}\cdot\left(\frac{4}{a}+\frac{1}{4b}\right)\ge\frac{25}{4}\)
\(\Leftrightarrow\frac{4}{a}+\frac{1}{4b}\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\frac{\sqrt{a}}{\frac{2}{\sqrt{a}}}=\frac{\sqrt{b}}{\frac{1}{2\sqrt{b}}}\\a+b=\frac{5}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=4b\\a+b=\frac{5}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=\frac{1}{4}\end{matrix}\right.\)
2, Với x,y,z\(\ge\)0 có \(x^3+y^3+z^3\ge xyz\left(x+y+z\right)\)
Dấu "=" xảy ra <=> x=y=z
Áp dụng bđt trên với a,b,c >0 có
\(\frac{1}{a^3}+\frac{a^3}{b^3}+b^3\ge\frac{1}{a}.\frac{a}{b}.b\left(\frac{1}{a}+\frac{a}{b}+b\right)\)=\(\frac{1}{a}+\frac{a}{b}+b\)
Dấu "=" xảy ra <=>a=b=1
\(a+b+\frac{4}{a}+\frac{1}{4b}=\frac{25}{36}a+\frac{4}{a}+\frac{25}{36}b+\frac{1}{4b}+\frac{11}{36}\left(a+b\right)\)
\(\ge2\sqrt{\frac{25}{36}a.\frac{4}{a}}+2\sqrt{\frac{25}{36}b.\frac{1}{4b}}+\frac{11}{36}.3\)
\(=\frac{10}{3}+\frac{5}{6}+\frac{11}{12}=\frac{61}{12}\)
Dấu \(=\)khi \(\hept{\begin{cases}\frac{25}{36}a=\frac{4}{a}\\\frac{25}{36}b=\frac{1}{4b}\\a+b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{12}{5}\\b=\frac{3}{5}\end{cases}}\).