Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
a) Ta có: \(\left|-x+8\right|\ge0\)
\(\Rightarrow A=\left|-x+8\right|-21\ge-21\)
Vậy \(MIN_A=-21\) khi x = 8
b) Ta có: \(\left|-x-17\right|+\left|y-36\right|\ge0\)
\(\Rightarrow B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)
Vậy \(MIN_B=12\) khi \(x=-17;y=36\)
c) Ta có: \(-\left|2x-8\right|\le0\)
\(\Rightarrow C=-\left|2x-8\right|-35\le-35\)
Vậy \(MAX_C=-35\) khi \(x=4\)
d) Ta có: \(3\left(3x-12\right)^2\ge0\)
\(\Rightarrow D=3\left(3x-12\right)^2-37\ge-37\)
Vậy \(MIN_D=-37\) khi x = 4
e) Ta có: \(-3\left|2x+50\right|\le0\)
\(\Rightarrow E=-21-3\left|2x+50\right|\le-21\)
Vậy \(MAX_E=-21\) khi x = -25
g) \(\left(x-3\right)^2+\left|x^2-9\right|\ge0\)
\(\Rightarrow G=\left(x-3\right)^2+\left|x^2-9\right|+25\ge25\)
Vậy \(MIN_G=25\) khi x = 3
(a1+a2+a3+...+an)_<n(a1+a2+a3+...+an)
Vì a1+a2+a3+...+an chia hết cho a1+a2+a3+...+an
=>n(a1+a2+a3+...+an) chia hết cho a1+a2+a3+...+an
Vậy (a1+a2+a3+...+an)_<n(a1+a2+a3+...+an)
Xin lỗi nha .m chỉ mới nghĩ xong câu c
a ) \(A=2^0+2^1+2^2+...+2^{2010}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2011}\)
\(\Rightarrow2A-A=\left(2+...+2^{2011}\right)-\left(2^0+2^1+...+2^{2010}\right)\)
\(\Rightarrow2A-A=2^{2011}-2^0\)
\(\Rightarrow A=2^{2011}-1\)
b ) \(B=1+3+3^2+...+3^{100}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)
\(\Rightarrow3B-B=\left(3+3^2...+3^{2011}\right)-\left(1+3+...+3^{2010}\right)\)
\(\Rightarrow2B=3^{2011}-1\)
\(\Rightarrow B=\frac{3^{2011}-1}{2}\)
Chúc bạn học tốt !!!