K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2017

a+b+c+d=0

=>a+b=-(c+d)

=>(a+b)^3=-(c+d)^3

=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)

=>a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)

=>a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) vi a+b=-(c+d)

=> a^3+b^3+c^3+d^3=3(c+d)(ab+cd)

Xem lai gium mk nha!!

26 tháng 9 2017

Ta có : a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd)

28 tháng 7 2015

Ta có a+b+c+d=0 
=> a+b=-(c+d) 
=> (a+b)^3=-(c+d)^3 
=> a^3+b^3+3ab(a+b) = -c^3-d^3-3cd(c+d) 
=> a^3+b^3+c^3+d^3 = -3ab(a+b)-3cd(c+d) 
=> a^3+b^3+c^3+d^3 = 3ab(c+d)-3cd(c+d)      (vì a+b = - (c+d)) 
=> a^3 +b^3+c^3+d^3 = 3(c+d)(ab-cd) (đpcm)

7 tháng 4 2017

bn Đinh Tuấn Việt có nick hoc 24 h à

27 tháng 9 2019

Câu hỏi của ✰✰ βєsէ ℱƐƝƝIƘ ✰✰ - Toán lớp 8 - Học toán với OnlineMath

31 tháng 7 2019

b) \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (chuyển vế qua)

\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Do VP >=0 với mọi a, b, c. Nên để đăng thức xảy ra thì a = b = c

31 tháng 7 2019

c) a + b + c = 0 suy ra a = -(b+c)

\(a^3+b^3+c^3=b^3+c^3-\left(b+c\right)^3\)

\(=b^3+c^3-b^3-3bc\left(b+c\right)-c^3\)

\(=3bc.\left[-\left(b+c\right)\right]=3abc\) (đpcm)

22 tháng 6 2017

Tìm trước khi hỏi : Câu hỏi của Phan Thị Hồng Nhung - Toán lớp 9 - Học toán với OnlineMath

1 tháng 5 2018

a+b+c+d=0↔a+b=−(c+d)a+b+c+d=0↔a+b=−(c+d)

↔(a+b)3=−(c+d)3↔(a+b)3+(c+d)3=0 ↔ (a+b)3=−(c+d)3↔(a+b)3+(c+d)3=0

↔a3+b3+c3+d3+3(a+b)ab+3(c+d)cd=0 ↔ a3+b3+c3+d3+3(a+b)ab+3(c+d)cd=0

↔a3+b3+c3+d3= 3(c+d)ab−3cd(c+d)= 3(c+d)(ab−cd) ↔ a3+b3+c3+d3= 3(c+d)ab −3cd(c+d)= 3(c+d)(ab−cd)
 

8 tháng 12 2015

Từ  \(a+b+c+d=0\)  \(\Rightarrow\) \(a+b=-\left(c+d\right)\) \(\Rightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3-d^3-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(c+d\right)\left(ab-cd\right)\left(đpcm\right)\)

a+b+c+d=0

=>c+d=-a-b

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=\left(a+b\right)^3+\left(-a-b\right)^3+3ab\left(c+d\right)-3cd\left(c+d\right)\)

\(=3ab\left(c+d\right)-3cd\left(c+d\right)\)

=3(c+d)(ab-cd)