K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: \(AM=MB=\dfrac{AB}{2}\)

\(DP=PC=\dfrac{DC}{2}\)

mà AB=DC

nên AM=MB=DP=PC

Ta có: \(AQ=QD=\dfrac{AD}{2}\)

\(BN=NC=\dfrac{BC}{2}\)

mà AD=BC

nên AQ=QD=BN=NC

Xét tứ giác AMPD có

AM//PD

AM=PD

Do đó: AMPD là hình bình hành

b: Xét tứ giác ANCQ có

AQ//CN

AQ=CN

Do đó: ANCQ là hình bình hành

=>AN//CQ

c: Xét tứ giác BMDP có

BM//DP

BM=DP
Do đó: BMDP là hình bình hành

=>BD cắt MP tại trung điểm của mỗi đường(1)

Ta có: ANCQ là hình bình hành

=>AC cắt NQ tại trung điểm của mỗi đường(2)

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(3)

Từ (1),(2),(3) suy ra MP cắt NQ tại trung điểm của mỗi đường

=>MNPQ là hình bình hành

26 tháng 6 2024

ai giúp ko

26 tháng 6 2024
a) Vì  M, N là trung điểm của AB, BC => MN là đường trung bình của ABC

{MN//ACMN=12AC𝑀𝑁 // 𝐴𝐶𝑀𝑁=12𝐴𝐶                                                           (1)

Vì P, Q là trung điểm của CD, DA => PQlà đường trung bình của tam giác ADC

{PQ//ACPQ=12AC𝑃𝑄 // 𝐴𝐶𝑃𝑄=12𝐴𝐶  (2)

Từ (1) và (2) => MNPQ là hình bình hành.

11 tháng 11 2018

MỌI NGƯỜI GIÚP MÌNH TRONG HÔM NAY VỚI Ạ !!! MAI MÌNH KIỂM TRA RÙI !!! THANK KIU EVERYONE,  MONG NHẬN ĐK CÂU TRẢ LỜI SỚM ( MÀ MỌI NGƯỜI KHÔNG CẦN VX HÌNH ĐÂU Ạ ^^)

11 tháng 11 2018

1)      a.   xét trong tam giác ABC có

           I trung điểm AB và K trung điểm AC  =>IK là đường trung bình của tam giác ABC=>IK song song với BC

            vậy BCKI là hình thang (vì có hai cạng đáy song song)

          b.

            IK  // và =1/2BC   (cm ở câu a)   =>IK song  song NM

            M trung điểm HC  và N trung điểm HB  mà HB+HC=CB =>MN=IK=1/2BC

            suy ra MKIN là hbh => có hai đường chéo bằng nhau =>IM=NK

24 tháng 2 2020

( bạn tự vẽ hình nha )
a, Vì M nằm tren cạnh AB, N nằm trêm cạnh CD => AM \(//\) CN
Mà AM=CN ( Theo gt) . Do đó tứ giác AMCN là hình bình hành ( Theo đk 3)
b, Vì ABCD là hình bình hành => Góc A= Góc C
Xét 2 tam giác AMP và tam giác CNQ bằng nhau theo TH c-g-c ( Tự CM )
=> MP=NC( 2 cạnh tương ứng )(1)
CMTT 2 tam giác MBQ và NDP ta được MQ=PN (2)
Từ (1) và (2) ta có MPNQ là hình bình hành (đpcm)