K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

Từ \(a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3=a^3+b^3-a^3-3a^2b-3ab^2-b^3=0\)

\(\Leftrightarrow-3a^2b-3ab^2=0\Leftrightarrow-3ab\left(a+b\right)=0\Rightarrow a+b=0\Rightarrow\hept{\begin{cases}a=-b\\c=0\end{cases}}\)

\(\Rightarrow a^{2017}+b^{2017}+c^{2017}=a^{2017}-a^{2017}+0^{2017}=0\)

Xét tiếp 2 TH \(a+c=-b;b+c=-a\) ta cũng có đc \(a^{2017}+b^{2017}+c^{2017}=0\)

25 tháng 8 2019

\(a^3+b^3-2808^{2017}=2c^3-16d^3\Rightarrow a^3+b^3+16d^3-2c^3=2808^{2017}⋮3\Rightarrow a^3+b^3+d^3+c^3+15d^3-3c^3⋮3\Leftrightarrow\left(a^3+b^3+c^3+d^3\right)+3\left(5d^3-c^3\right)⋮3\Rightarrow a^3+b^3+c^3+d^3⋮3\) \(xet:k^3-k\left(k\in Z\right)=k\left(k^2-1\right)=\left(k-1\right)k\left(k+1\right)ma:k-1;k;k+1\) là 3 sô nguyên liên tiếp

\(\Rightarrow k^3-k⋮3\)

\(\Rightarrow\left(a^3-a+b^3-b+c^3-c+d^3-d\right)⋮3\Rightarrow a+b+c+d⋮3\left(vi:a^3+b^3+c^3+d^3⋮3\right)\)

25 tháng 8 2019

Cảm ơn bn, 1 lần nx !

NV
12 tháng 10 2020

\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)

\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)

\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

\(S_{min}=1\) khi \(a=b=c=1\)

GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)

NV
12 tháng 10 2020

Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)

Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

\(\Rightarrow P=1\)

Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)

\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)

TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ

TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)

\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)

Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)

Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ

NV
18 tháng 9 2019

Vế phải là 17 hay 2017 bạn? Là 17 thì ko giải được đâu

3 tháng 10 2019

2017, mình ghi nhầm ấy mà

mà mình giải được rồi ^^

8 tháng 8 2018

Có \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)(BĐT Bunhiacopxki)

\(=\left(1+1+1\right)^2=9\)

Vậy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>1\)

Vậy bài toán ko giải đc; Nếu mk làm sai thì thứ lỗi vì mk năm nay mới lên lớp 8

16 tháng 10 2017

\(x=2-\sqrt{3}\)

suy ra

\(x^2-4x=7-4\sqrt{3}-8+4\sqrt{3}=-1\)

bây giờ thì dễ rồi

thay vào nhé

\(A=6\left(-1\right)^{2017}+8\left(-1\right)^{2017}+2016=2002\)

26 tháng 9 2017

Ta có : \(a^3+b^3+c^3=3abc\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

Do a;b;c đôi một khác nhau nên \(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ne0\)

Do đó a + b + c = 0

Gọi \(M=\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\) ta có :

\(M.\frac{c}{a-b}=1+\frac{c}{a-b}\left(\frac{b-c}{a}+\frac{c-a}{b}\right)=1+\frac{c}{a-b}.\frac{b^2-bc+ac-a^2}{ab}\)

\(=1+\frac{c}{a-b}.\frac{\left(a-b\right)\left(c-a-b\right)}{ab}=1+\frac{2c^2}{ab}=1+\frac{2c^3}{abc}\)

Tương tự : \(\hept{\begin{cases}M.\frac{a}{b-c}=1+\frac{2a^3}{abc}\\M.\frac{b}{c-a}=1+\frac{2b^3}{abc}\end{cases}}\)

Cộng vế với vế ta được \(P=3+\frac{2\left(a^3+b^3+c^3\right)}{abc}=3+\frac{2.3abc}{abc}=3+6=9\)