Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Rightarrow ab+bc+ca=0\\ \)
\(\Rightarrow bc=-ab-ac,ca=-ab-bc,ab=-bc-ca\)
\(\Rightarrow\frac{a^2+bc}{a^2+2bc}=\frac{a^2+bc}{a^2+bc+bc}=\frac{a^2+bc}{a^2+bc-ca-ab}=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}\)
Làm tương tự. có: \(\frac{b^2+ca}{b^2+2ca}=\frac{b^2+ca}{b^2+ca-ab-bc}=\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}\)
\(\frac{c^2+ab}{c^2+2ab}=\frac{c^2+ab}{c^2+ab-ca-bc}=\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)
\(\Rightarrow A=\frac{a^2+bc}{\left(a-b\right).\left(a-c\right)}+\frac{b^2+ca}{\left(a-b\right).\left(c-b\right)}+\frac{c^2+ab}{\left(b-c\right).\left(a-c\right)}\)
\(=\frac{\left(a^2+bc\right).\left(b-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}-\frac{\left(b^2+ca\right).\left(a-c\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}+\frac{\left(c^2+ab\right).\left(a-b\right)}{\left(a-b\right).\left(b-c\right).\left(a-c\right)}\)
Sau đó bạn thực hiện tiếp nhé.
Bài 1: Cho \(a,b,c\ge0:a^2+b^2+c^2=3\). CMR: \(a^4b^4+b^4c^4+c^4a^4\le3\)
Bài 2: Cho \(a,b,c\ge0\). CMR: \(a^2+b^2+c^2+2abc+1\ge2\left(ab+bc+ca\right)\)
Bài 3: Cho \(a,b,c\ge0:a^2+b^2+c^2=a+b+c\). CMR: \(a^2b^2+b^2c^2+c^2a^2\le ab+bc+ca\)
Bài 4: Cho \(a,b,c\ge0\). CMR: \(4\left(a+b+c\right)^3\ge27\left(ab^2+bc^2+ca^2+abc\right)\)
Bài 5: Cho \(a,b,c\ge0:a+b+c=3\).CMR: \(\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}+\frac{1}{2ab^2+1}\ge1\)
Ta có:\(a+b+c=0\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+b^2+2ab=c^2\Rightarrow a^2+b^2-c^2=-2ab\)
Tươmg tự ta cũng có:\(b^2+c^2-a^2=-2bc\) và \(c^2+a^2-b^2=-2ca\)
\(\Rightarrow P=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ca}=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=0\)
a+b+c=0 => a= -(b+c) TƯƠNG TỰ
b= -(a+c) ; c= -(b+a)
ta co P= \(\frac{1}{\left(b+c\right)^2+\left(b^2-c^2\right)}+\frac{1}{\left(a+c\right)^2+\left(a^2-c^2\right)}+\frac{1}{\left(b+a\right)^2+\left(b^2-a^2\right)}\)
=> P= \(\frac{1}{2c\left(b+c\right)}+\frac{1}{2b\left(a+c\right)}+\frac{1}{2a\left(b+c\right)}\)
thay b+c=-a; a+c=-b ; a+b=-c (như trên )
=> P= \(\frac{1}{-2ac}+\frac{1}{-2ab}+\frac{1}{-2bc}\)
QUY ĐONG CAC MAU THUC TA CO
P= \(\frac{a+b+c}{-2abc}\)
a+b+c=0 => P=0
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=>\(\frac{1}{a}=-\left(\frac{1}{b}+\frac{1}{c}\right)\)
=>\(\frac{1}{a^2}=-\left(\frac{1}{ab}+\frac{1}{ca}\right)\)
cm tương tự: \(\frac{1}{b^2}=-\left(\frac{1}{ab}+\frac{1}{bc}\right)\)
\(\frac{1}{c^2}=-\left(\frac{1}{ca}+\frac{1}{bc}\right)\)
=> \(N=-\left[bc\left(\frac{1}{ab}+\frac{1}{ca}\right)+ca\left(\frac{1}{ab}+\frac{1}{bc}\right)+ab\left(\frac{1}{ca}+\frac{1}{bc}\right)\right]\)
\(=-\left[\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\right]\)
\(=-\left[\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right]\) (1)
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
=>\(\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}=0\)
=>\(1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}=0\)
=>\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=-3\) (2)
Từ (1) và (2) =>N=3
Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath
Học tốt=)
tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2
\(a\left(a^2-bc\right)+b\left(b^2-ca\right)+c\left(c^2-ab\right)=0\)
\(\Rightarrow a^3-abc+b^3-abc+c^3-abc=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Mà \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow}a=b=c\)
Vậy \(P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\)
http://diendantoanhoc.net/topic/152549-t%C3%ADnh-fraca2a2-b2-c2-fracb2b2-c2-a2fracc2c2-b2-a2/
Ta có: \(a+b+c=0\)
\(\Rightarrow1\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2+b^2=-2ab+c^2\\b^2+c^2=-2bc+a^2\\c^2+a^2=-2ac+b^2\end{cases}}\)
\(\Rightarrow1A=\frac{a^2}{a^2+2bc-a^2}+\frac{b^2}{b^2+2ac-b^2}+\frac{c^2}{c^2+2ab-c^2}\)
\(=\frac{a^3+b^3+c^3}{2abc}=\frac{a^3+b^3+c^3-3abc+3abc}{2abc}\)
\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\)
\(=\frac{3}{2}\)