Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tam giác BHA và tam giác BCA là 2 tam giác vuông có:
+ góc BHA= góc BAC
=> tam giác BAH đồng dạng với BCA
a, Xét \(\Delta\)BAH và \(\Delta\)BCA có: \(\widehat{ABC}\) chung; \(\widehat{AHB}\) = \(\widehat{BAC}\) = 900
⇒\(\Delta\)BAH \(\sim\)\(\Delta\)BCA (g-g)
⇒\(\dfrac{BA}{BC}=\dfrac{AH}{CA}=\dfrac{BH}{BA}\)
b, Theo pytago ta có: BC2 = AB2 + AC2 = 152+162 = 481 (cm2)
⇒ BC = \(\sqrt{481}\) cm
Kẻ đường cao DK vuông góc với BC cắt BC tại K
DA = DK ( vì mọi điểm trên tia phân giác thì cách đều hai cạnh còn lại)
Vì \(\Delta\)ABD và \(\Delta\)BCD có đường cao bằng nhau nên tỉ số diện tich hai tam giác bằng tỉ số hai cạnh đáy và bằng:
\(\dfrac{AB}{BC}\) = \(\dfrac{15}{\sqrt{481}}\)
Tương tự ta có tỉ số diện tích hai tam giác, tam giác ABD và tam giác BCD bằng:
\(\dfrac{AD}{DC}\) ⇒ \(\dfrac{AD}{DC}\) = \(\dfrac{15}{\sqrt{481}}\) ⇒ \(\dfrac{AD}{15}\) = \(\dfrac{DC}{\sqrt{481}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{AD}{15}\) = \(\dfrac{DC}{\sqrt{481}}\) = \(\dfrac{AD+DC}{15+\sqrt{481}}\) = \(\dfrac{16}{15+\sqrt{481}}\)
AD = \(\dfrac{16}{15+\sqrt{481}}\)\(\times\)15 = \(\dfrac{240}{15+\sqrt{481}}\) = \(\dfrac{15}{16}\)(\(\sqrt{481}\) - 15)
DC = \(\dfrac{16}{15+\sqrt{481}}\) \(\times\) \(\sqrt{481}\) = \(\dfrac{1}{16}\)(481 - 15\(\sqrt{481}\))
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
a: Xét ΔBAH vuông tại H và ΔACH vuông tại H có
góc BAH=góc ACH
=>ΔHBA đồng dạg với ΔHAC
b: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
c: BC=căn 6^2+8^2=10cm
Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
góc B chung
=>ΔBAH đồng dạng với ΔBCA
=>S BAH/S BCA=(BA/BC)^2=9/25