Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E
có: BD là cạnh chung
góc ABD = góc EBD (gt)
\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)⇒ΔABD=ΔEBD(ch−gn)
b) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)
=> AB = EB = 6 cm ( 2 cạnh tương ứng)
=> EB = 6 cm
Xét tam giác ABC vuông tại Acó: AB^2+AC^2=BC^2\left(py-ta-go\right)AB2+AC2=BC2(py−ta−go)
thay số: 6^2+8^2=BC^262+82=BC2
\Rightarrow BC^2=100⇒BC2=100
\Rightarrow BC=10cm⇒BC=10cm
mà E\in BCE∈BC
=> EB + EC = BC
thay số: 6 + EC = 10
EC = 10 - 6
=> EC = 4 cm
c) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)
=> AD = ED ( 2 cạnh tương ứng)
AB = EB ( 2 cạnh tương ứng) (1)
Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E
có: AD = ED ( chứng minh trên)
góc ADI = góc EDC ( đối đỉnh)
\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)⇒ΔADI=ΔEDC(cgv−gn)
=> AI = EC ( 2 cạnh tương ứng)(2)
Từ (1);(2) => AB + AI = EB + EC
=> BI = BC
=> tam giác BIC cân tại B ( định lí tam giác cân)
d) ta có: \Delta ABD=\Delta EBD\left(pa\right)ΔABD=ΔEBD(pa)
=> AD = ED ( 2 cạnh tương ứng) (1)
Xét tam giác EDC vuông tại E
có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)
Từ (1);(2) => AD <DC
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
A B C N M D H I
a, xét tam giác AMB và tam giác NMC có :
BM = MC do M là trung điểm của BC (gt)
AM = NM do M là trung điểm của AN (Gt)
góc AMB = góc NMC (đối đỉnh)
=> tam giác AMB = tam giác NMC (c-g-c)
b, tam giác AMB = tam giác NMC (câu a)
=> góc ABM = góc MCN (đn)
c, tam giác AMB = tam giác NMC (câu a)
=> BA = CN (đn) (1)
xét tam giác BAH và tam giác BIH có : BH chung
góc BHA = góc BHI = 90 (gt)
HI = HA (Gt)
=> tam giác BAH = tam giác BIH (2cgv)
=> BI = BA (đn) (2)
(1)(2) => BI = CN
a) Xét ∆ABM và ∆CMN ta có :
AM = MN
BM = MC
AMB = CMN ( đối đỉnh)
=> ∆ABM = ∆CMN (c.g.c)
b) Vì ∆ABM = ∆CMN (cmt)
=> ABM = NCM
Mà 2 góc này ở vị trí so le trong
=> AB //NC
=> DB // NC
Ta có : BDC + DCN = 180° ( kề bù)
=> DCN = 90°
c) Xét ∆ vuông ABH và ∆vuông IHB ta có :
AH = HI
BH chung
=> ∆ABH = ∆IHB ( 2 cạnh góc vuông)
=> BA = BI
Mà AB = CN (cmt)
=> BI = CN ( cùng bằng BA)
a)Xét tam giác AMH và tam giác MNB
Góc M1= Góc M2 ( đối đỉnh)
MA = MN (gt)
MB = MH ( M là trung điểm của BH)
=> tam giác AMH = tam giác MNB ( cgc)
tam giác AMH = tam giác MNB (cmt)
góc B = góc H (góc tương ứng)
Mà góc H = 90 độ ( kẻ Ah vuông góc với BC )
Vậy góc B = góc H = 90 độ
=> NB vuông góc với BC
b)tam giác AMH = tam giác MNB(câu a)
AH=NB( cạnh tương ứng)
Xét tam giác ABH, có:
AB > AH ( quan hệ giữa cạnh huyền và cạnh góc vuông)
Mà AH=NB(chứng minh trên)
=> AB > NB
a) Theo định lí pitago trong
Trong tam giác vuông ABC có :
BC2 = AB2 + AC2
BC2 =52 + 122 =15+144=169
suy ra : BC = /169 =13 (cm )
b)
Trong tam giác vuông ABC có:
 = 90 độ (tam giác ABC vuông tại A)
GB = GC = 45 độ ( tính chất của tam giác vuông)
suy ra : Â >GB = GC
c)
Xét tam giác AHN và tam giác CIN có :
GN1 = GN2 ( đối đỉnh )
NH = NI ( gt)
NA = NC ( N là trung điểm của AC )
Suy ra :tam giác AHN = tam giác CIN ( c-g-c)
d)
Suy ra :GH1 = GC1( Tam giác AHN = Tam giác CIN)
Suy ra :GH2 = GC2 = 45 độ
Xét tam giác AHE và tam giác ICE có :
GH = GC ( C/M trên )
AH = CI ( Tam giác AHN = tam giác CIN )
HE = CE ( E là trung điểm của HC )
suy ra : tam giác AHE = tam giác ICE ( c-g-c)
suy ra :
AE = IE ( 2 cạnh tương ứng )
Suy ra :
tam giác AEI cân tại I
Mình làm vậy ko biết có đúng ko nữa ? nhưng mình đoán là zậy đấy
A B C 12 5 H N
từ từ đợi tí!