Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay a+b+c=2017 vào \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\) ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)\(\Rightarrow\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{c\left(b+c\right)+ca+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+ca+ab\right]=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+a\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\)\(a+b=0\) hoặc \(b+c=0\) hoặc \(c+a=0\)
\(\Rightarrow\)\(c=2017\)hoặc \(a=2017\) hoặc \(b=2017\left(đpcm\right)\)
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
Bạn cho thiếu đề bài rồi, nếu a=b=c=0 thì vẫn thỏa mãn yêu cầu của đề bài
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo cách làm tương tự nhé!
Em tham khảo cách làm tương tự như link dưới:
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo cách làm như link trên!
Ta có: \(a+b+c=0\Rightarrow a+b=-c\)
\(a^3+b^3+c^3=0\)
\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)+c^3=0\)
\(\Rightarrow-c.\left(a^2+2ab+b^2-3ab\right)+c^3=0\)
\(\Rightarrow-c\left[\left(a+b\right)^2-3ab\right]+c^3=0\)
\(\Rightarrow-c\left(c^2-3ab\right)+c^3=0\)
\(\Rightarrow-c^3+3abc+c^3=0\Rightarrow3abc=0\Rightarrow abc=0\)
\(\Rightarrow\)\(a=0\) hoặc \(b=0\) hoặc \(c=0\)
\(\Rightarrowđpcm\)