\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 1 2022

\(\dfrac{a^3}{\left(a+2b\right)\left(b+2c\right)}+\dfrac{a+2b}{27}+\dfrac{b+2c}{27}\ge3\sqrt[3]{\dfrac{a^3\left(a+2b\right)\left(b+2c\right)}{27^2.\left(a+2b\right)\left(b+2c\right)}}=\dfrac{a}{3}\)

Tương tự:

\(\dfrac{b^3}{\left(b+2c\right)\left(c+2a\right)}+\dfrac{b+2c}{27}+\dfrac{c+2a}{27}\ge\dfrac{b}{3}\)

\(\dfrac{c^3}{\left(c+2a\right)\left(a+2b\right)}+\dfrac{c+2a}{27}+\dfrac{a+2b}{27}\ge\dfrac{c}{3}\)

Cộng vế:

\(VT+\dfrac{2\left(a+b+c\right)}{9}\ge\dfrac{a+b+c}{3}\)

\(\Rightarrow VT\ge\dfrac{a+b+c}{9}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(B=\frac{1}{(a+2b)(a+2c)}+\frac{1}{(b+2a)(b+2c)}+\frac{1}{(c+2a)(c+2b)}\)

\(\geq \frac{9}{(a+2b)(a+2c)+(b+2a)(b+2c)+(c+2a)(c+2b)}\)

\(\Leftrightarrow B\geq \frac{9}{(a^2+2ac+2ab+4bc)+(b^2+2bc+2ab+4ac)+(c^2+2bc+2ac+4ab)}\)

\(\Leftrightarrow B\geq \frac{9}{a^2+b^2+c^2+8(ab+bc+ac)}=\frac{9}{(a+b+c)^2+6(ab+bc+ac)}(*)\)

Theo hệ quả quen thuộc của BĐT Cô-si:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Rightarrow 2(a+b+c)^2\geq 6(ab+bc+ac)(**)\)

Từ \((*); (**)\Rightarrow B\geq \frac{9}{(a+b+c)^2+2(a+b+c)^2}=\frac{3}{(a+b+c)^2}\geq \frac{3}{3^2}=\frac{1}{3}\)

(do \(a+b+c\leq 3)\)

Do đó: \(B_{\min}=\frac{1}{3}\)

Dấu bằng xảy ra khi \(a=b=c=1\)

12 tháng 5 2017

\(P=\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}\ge1\)

Áp dụng BĐT Cô-si vào 3 số dương ta có :

\(\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b}{3}+\dfrac{2c+a}{9}\ge3\sqrt[3]{\dfrac{a^3}{b\left(2c+a\right)}.\dfrac{b}{3}.\dfrac{2c+a}{9}}=a\) ( 1 )

Tương tự ta có :

\(\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c}{3}+\dfrac{2a+b}{9}\ge3\sqrt[3]{\dfrac{b^3}{c\left(2a+b\right)}.\dfrac{c}{3}.\dfrac{2a+b}{9}}=b\) ( 2 )

\(\dfrac{c^3}{a\left(2b+c\right)}+\dfrac{a}{3}+\dfrac{2b+c}{9}\ge3\sqrt[3]{\dfrac{c^3}{a\left(2b+c\right)}.\dfrac{a}{3}.\dfrac{2b+c}{9}}=c\) ( 3 )

Cộng từng vế của ( 1 ) ( 2 ) và ( 3 ) ta có :

\(\dfrac{a^3}{c\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}+\dfrac{2}{3}\left(a+b+c\right)\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^3}{b\left(2c+a\right)}+\dfrac{b^3}{c\left(2a+b\right)}+\dfrac{c^3}{a\left(2b+c\right)}+\dfrac{2}{3}.3\ge3\)

\(\Leftrightarrow P\ge1\)

\(\LeftrightarrowĐpcm.\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt

12 tháng 5 2017

có a3 kìa sao ko thay vào thành aa+b+c r` giải thử nhỉ :D

3 tháng 4 2018

B1:

\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Xét hiệu:

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

=> BĐT luôn đúng

*

Ta có:

\(a< b+c\Rightarrow a^2< ab+ac\)

\(b< a+c\Rightarrow b^2< ab+ac\)

\(c< a+b\Rightarrow a^2< ac+bc\)

Cộng từng vế bất đẳng thức ta được:

\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

3 tháng 4 2018

B2:

Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)

Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)

Suy ra:

\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

=> ĐPCM

13 tháng 8 2017

4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)

=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2

=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc

Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)

13 tháng 8 2017

1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0

=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm

30 tháng 12 2017

Ta có: 

\(3\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)

 =   \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)\(=a^3+ab^2+ac^2+a^2b+b^3+bc^2+ca^2+b^2c+c^3\)\(-3\left(a^2b+b^2c+c^2a\right)\)

\(=a^3+b^3+c^3+ab^2+bc^2+ca^2-2a^2b-2b^2c-2c^2a\)

\(=\left(a^3-2a^2b+ab^2\right)+\left(b^3-2b^2c+bc^2\right)+\left(c^3-2c^2a+ca^2\right)\)

\(=a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\)

Mà \(a,b,c>0\)

\(\Rightarrow a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\ge0\)

\(\Rightarrow\)\(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

Lại có: 

\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b+b^2c+c^2a\right)\)<đpcm>

30 tháng 12 2017

bài trên mk làm sai rồi, mong mọi người thông cảm và nghĩ cách khác nha