\(\frac{a+bc}{b+c}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

Các bạn và thầy cô giúp mk đi

23 tháng 3 2017

Từ \(a+b+c=1\Rightarrow2a+2b+2c=1\)

\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+a\right)=2\)

Ta có: \(\frac{a+bc}{b+c}=\frac{a\left(a+b+c\right)+bc}{b+c}=\frac{\left(a+b\right)\left(a+c\right)}{b+c}\)

Tương tự ta viết lại BĐT cần chứng minh như sau:

\(\frac{\left(a+b\right)\left(a+c\right)}{b+c}+\frac{\left(a+b\right)\left(b+c\right)}{c+a}+\frac{\left(a+c\right)\left(b+c\right)}{a+b}\ge2\)

Đặt \(\hept{\begin{cases}x=b+c\\y=a+c\\z=a+b\end{cases}}\) thì BĐT cần chứng minh là:

\(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge2\forall\hept{\begin{cases}x,y,z>0\\x+y+z=2\end{cases}}\)

Áp dụng BĐT AM-GM ta có: 

\(\hept{\begin{cases}\frac{xy}{z}+\frac{xz}{y}\ge2x\\\frac{xz}{y}+\frac{yz}{x}\ge2y\\\frac{yz}{x}+\frac{xy}{z}\ge2z\end{cases}}\)

Cộng theo vế rồi thu gọn ta có:\(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\ge2\)

BĐT được chứng minh nên BĐT đầu cũng đã được chứng minh

31 tháng 3 2018

a+bc/b+c  +  b+ca/c+a  +  c+ab/a+b

ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a

tương tự với các phân số còn lại:

ta đc:H=(1-b)(1-c)/1-a  +  (1-a)(1-c)/1-b  +  (1-a)(1-b)/1-c

đặt 1-a=x, 1-b=y, 1-c=z =>

yz/x + xz/y + xy/z

áp dụng bđt cô-sin =>

yz/x + xz/y >= 2 căn yz/x . xz/y=2z

tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y

=> 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4

=> H>= 2

=> bt trên >= 2

31 tháng 3 2018

a+bc/b+c  +  b+ca/c+a  +  c+ab/a+b ta có: a+bc/c+b = a+(1-a-c).c/(1-a-c)+c = a+c-ac-c^2/1-a = (a+c)-c(a+c)/1-a = (a+c)(1-c)/1-a = (1-b)(1-c)/1-a tương tự với các phân số còn lại: ta đc:H=(1-b)(1-c)/1-a  +  (1-a)(1-c)/1-b  +  (1-a)(1-b)/1-c đặt 1-a=x, 1-b=y, 1-c=z => yz/x + xz/y + xy/z áp dụng bđt cô-sin => yz/x + xz/y >= 2 căn yz/x . xz/y=2z tương tự => xz/y + xy/z >= 2x và xy/z + yz/x >= 2y => 2H >= 2(x+y+z) = 2(1-a + 1-b + 1-c)=2(3 - (a+b+c))=2(3-1)=2.2=4 => H>= 2 => bt trên >= 2 

17 tháng 5 2019

Áp dụng BĐT Bunhiacopxki ta có:

\(\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Dấu " = " xảy ra <=> a=b=c=1

Có: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\Leftrightarrow a+b+c\ge3\)( bạn tự c/m nhé )

Dấu " = " xảy ra <=> a=b=c

Áp dụng BĐT Cauchy-schwarz ta có:

\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}\ge\frac{\left(a^2+b^2+c^2\right)^2}{4\left(a+b+c\right)}\ge\frac{\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{4\left(a+b+c\right)}=\frac{\left(a+b+c\right)^3}{36}\ge\frac{27}{36}=\frac{3}{4}\)

Dấu " = " xảy ra <=> a=b=c=1 ( bạn tự giải rõ ra nhé )

2 tháng 12 2017

\(\sqrt[4]{b^3}\)

3 tháng 5 2020

Vì a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)=2+\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\)

Do đó

\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\right)+\left(\frac{bc}{b^2+c^2}+\frac{b^2+c^2}{bc}\right)+\left(\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}\right)+\frac{3}{4}\)

\(\ge2\sqrt{\frac{ab}{a^2+b^2}\cdot\frac{a^2+b^2}{ab}}+2\sqrt{\frac{bc}{c^2+b^2}\cdot\frac{c^2+b^2}{bc}}+2\sqrt{\frac{ca}{a^2+c^2}+\frac{c^2+a^2}{ca}}+\frac{3}{4}\)

\(=2\cdot\frac{1}{2}+2\cdot\frac{1}{2}+\frac{2}{3}=\frac{15}{4}\)

Dấu "=" xảy ra <=> \(a=b=c=\frac{1}{3}\)

12 tháng 8 2017

Bài 1 với bài 2 như nhau, đăng làm gì cho tốn công :))

Áp dụng bất đẳng thức Cauchy ta có :

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

\(\frac{ab}{c}+\frac{ca}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ca}{b}}=2a\)

\(\frac{ac}{b}+\frac{bc}{a}\ge2\sqrt{\frac{ac}{b}.\frac{bc}{a}}=2c\)

Cộng vế với vế ta được :

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\ge2\left(a+b+c\right)\)

\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\ge a+b+c\)(đpcm)