\(\sqrt{3p}\ge\sqrt{p-a}+\sqrt{p...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2019

Ta có \(p-a>0;p-b>0;p-c>0\), áp dụng BĐT Bunhia:

\(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{\left(1+1+1\right)\left(3p-\left(a+b+c\right)\right)}\)

\(\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3\left(3p-2p\right)}=\sqrt{3p}\)

Dấu "=" xảy ra khi \(a=b=c\)

Lại áp dụng BĐT \(\sqrt{x}+\sqrt{y}+\sqrt{z}>\sqrt{x+y+z}\) với x,y,z dương:

\(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}>\sqrt{3p-\left(a+b+c\right)}=\sqrt{3p-2p}=\sqrt{p}\)

28 tháng 11 2019

Áp dụng BĐT Bu- nhi - a:

\(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\)\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(p-a+p-b+p-c\right)}\)

\(=\sqrt{3\left(3p-2p\right)}=\sqrt{3p}\)(Vì p là nửa chu vi nên \(a+b+c=2p\))

28 tháng 11 2019

Dấu "="\(\Leftrightarrow a=b=c\)hay tam giác ABC đều

9 tháng 12 2016
  • Chứng minh \(\sqrt{p}< \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\)

Vì \(\sqrt{p}>0\) nên ta có điều tương đương \(p< \left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\)

\(\Leftrightarrow p< \left(3p-a-b-c\right)+2\left(\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}\right)\)

\(\Leftrightarrow\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}>0\) (luôn đúng)

  • Chứng minh \(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Áp dụng BĐT Bunhiacopxki, ta được : \(\left(1.\sqrt{p-a}+1.\sqrt{p-b}+1.\sqrt{p-c}\right)^2\le3\left(p-a+p-b+p-c\right)\)

\(\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Vậy có đpcm.

AH
Akai Haruma
Giáo viên
31 tháng 10 2024

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c})^2\leq (p-a+p-b+p-c)(1+1+1)=3(3p-a-b-c)=3(3p-2p)=3p$

$\Rightarrow \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\leq \sqrt{3p}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c$

14 tháng 10 2016
  • Chứng minh \(\sqrt{p}< \sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\left(1\right)\)

Ta biến đổi tương đương : \(\left(1\right)\Leftrightarrow p< \left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\)

\(\Leftrightarrow p< 3p-\left(a+b+c\right)+2\sqrt{p-a}.\sqrt{p-b}+2\sqrt{p-b}.\sqrt{p-c}+2\sqrt{p-c}.\sqrt{p-a}\)

\(\Leftrightarrow\sqrt{p-a}.\sqrt{p-b}+\sqrt{p-b}.\sqrt{p-c}+\sqrt{p-c}.\sqrt{p-a}>0\) (luôn đúng)

  • Chứng minh \(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Áp dụng bđt Bunhiacopxki, ta có \(\left(1.\sqrt{p-a}+1.\sqrt{p-b}+1.\sqrt{p-c}\right)^2\le\left(1^2+1^2+1^2\right)\left(3p-a-b-c\right)\)

\(\Leftrightarrow\left(\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\right)^2\le3p\Rightarrow\sqrt{p-a}+\sqrt{p-b}+\sqrt{p-c}\le\sqrt{3p}\)

Dấu "=" xảy ra khi a = b = c => Tam giác ABC là tam giác đều

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

AH
Akai Haruma
Giáo viên
9 tháng 7 2020

Lời giải:

Biểu thức không có max mà chỉ có min bạn nhé. Nếu tính min thì làm như sau:

Đặt $x^{10}=a$ với $a\geq 0$

Khi đó: $P=a^{10}-10a+10$

Áp dụng BĐT Cô-si cho các số không âm ta có:

$a^{10}+\underbrace{1+1+1+...+1}_{9}\geq 10\sqrt[10]{a^{10}}=10a$

$\Leftrightarrow a^{10}+9\geq 10a$

$\Rightarrow P=(a^{10}+9)-10a+1\geq 10a-10a+1=1$

Vậy $P_{\min}=1$ khi $a=1\Leftrightarrow x=\pm 1$

26 tháng 7 2020

Dạ em cảm ơn ạ