Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a2 + b2 = c2
<=> (a2 + b2)n = c2n
<=> a2n + P + b2n = c2n
Mà P > 0 => a2n + b2n =< c2n
Dấu bằng xảy ra <=> n = 1 (làm đại ạ)
−1≤x≤1;−1≤y≤1;−1≤z≤1⇔x2;y2;z2≤1 (1)
Trong 3 số x;y;zcó ít nhất 2 số cùng dấu(giả xử là x;y) ta có: xy≥0⇒2xy≥0(2)
x2+y4+z6=x2+y2.y2+z2.z2.z2≤x2+y2+z2(3)
ta sẽ chứng minh:
x2+y2+z2≤2 ta có:
x2+y2+z2≤x2+y2+z2+2xy(từ (2) )
⇒x2+y2+z2≤(x+y)2+z2=(−z)2+z2=2z2≤2(từ (1) )
⇒x2+y4+z6≤2(đpcm)(từ (3) )
(kết luận)
a) \(n^2+n-17⋮n+5\)
\(\Leftrightarrow n\left(n+5\right)-\left(4n+17\right)⋮n+5\)
Mà \(n\left(n+5\right)⋮n+5\)
\(\Rightarrow4n+17⋮n+5\)
\(\Rightarrow4\left(n+5\right)-3⋮n+5\)
mà \(4\left(n+5\right)⋮n+5\)
\(\Rightarrow3⋮n+5\)
\(\Rightarrow n+5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lamf noots
b)\(n^2+3n-5⋮n-2\)
\(\Leftrightarrow n^2+2n+n-5⋮n-2\)
\(\Leftrightarrow n\left(n+2\right)+\left(n-2\right)-3⋮n-2\)
Vì \(\hept{\begin{cases}n\left(n-2\right)⋮n-2\\\left(n-2\right)⋮\left(n-2\right)\end{cases}}\)nên \(3⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Lập bảng:
\(n\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n-2\) | \(3\) | \(1\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{3;1;5;-1\right\}\)
sorry ,tui chưa học
sao tự nhiên lại đánh giá sai câu trả lời của mk chứ,chỉ chưa học thui mà,ai ác zậy sẽ bị mk trả thù