\(a^2+b^2+c^2+2abc< 2.\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2019

ta có: a,b,c là 3  cạnh của 1 tam giác

=> a+b >c  => a+b +c > 2c => 2 > 2c => c < 1

tương tự: a<1; b<1

=> (1-a).(1-c).(1-b) > 0

=> (1-a).(1-b-c+cb) >0

=> 1 -b -c + cb -a +ab +ac -abc >0

=> 1 + cb + ab +ac > b+c+a +abc

=> cb +ab +ac > 2 +abc -1 

=> cb +ab +ac > 1+abc

=> 2cb +2ab +2ac > 2 +2abc

=> a2 +  b2 + c2 + 2cb +2ab +2ac - 2 > 2abc + a2 + b2 +c2

=> (a+b+c)2 -2 > 2abc +a2 + b2 +c2

=> 22 - 2 > 2abc+ a2 + b2 + c2

=> a2 + b2 +c2 < 2 (đpcm)

7 tháng 4 2019

Ta có:a,b,c là 3 cạnh của 1tam giác

\(\Rightarrow a+b>c\)

\(\Rightarrow a+b+c>2c\)

\(\Rightarrow2>2c\)

\(\Rightarrow c< 1\)

tương tự:\(a< 1;b< 1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Rightarrow\left(1-a\right)\left(1-b-c+ab\right)>0\)

\(\Rightarrow1-b-c+cb-a+ab+ac-abc>0\)

\(\Rightarrow1+bc+ab+ac>a+b+c+abc\)

\(\Rightarrow ab+ac+bc>2+abc-1\)

\(\Rightarrow ab+bc+ac>1+abc\)

\(\Rightarrow2bc+2ab+2ac>2+2abc\)

\(\Rightarrow a^2+b^2+c^2+2bc+2ab+2ac-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow\left(a+b+c\right)^2-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow2^2-2>2abc+a^2+b^2+c^2\)

\(\Rightarrow a^2+b^2+c^2+2abc< 2\left(đpcm\right)\)

26 tháng 10 2020

impostor

26 tháng 10 2020

Vì a, b, c là độ dài ba cạnh của tam giác suy ra :a,b, c >0

Áp dụng bđt cosi ta có

\(a^2+bc\ge2a\sqrt{bc}\)

\(b^2+ac\ge2b\sqrt{ac}\)

\(c^2+ab\ge2c\sqrt{ab}\)

Suy ra 

\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ac}}+\frac{1}{2c\sqrt{ab}}\)

\(=\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\left(1\right)\)

Theo bđt cosi \(\frac{a+b}{2}\ge\sqrt{ab}\)

do đó  (1) \(\Leftrightarrow\frac{1}{2}\left(\frac{\sqrt{bc}+\sqrt{ac}+\sqrt{ab}}{abc}\right)\le\frac{1}{2}\left(\frac{\frac{b+c}{2}+\frac{a+c}{2}+\frac{a+b}{2}}{abc}\right)\)

\(=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=\frac{a+b+c}{2abc}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\left(đpcm\right)\)

27 tháng 7 2020

\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)

Tương tự:

\(\sqrt{\frac{b}{c+a}}\le\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\le\frac{2c}{a+b+c}\)

\(\Rightarrow LHS\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)

Tuy nhiên đẳng thức ko xảy ra :p

28 tháng 7 2020

a) \(\frac{\left(a+b\right)^2}{2}+\frac{a+b}{4}=\frac{a+b}{2}\left(a+b+\frac{1}{2}\right)\ge\sqrt{ab}\left[\left(a+\frac{1}{4}\right)+\left(b+\frac{1}{4}\right)\right]\)\(\ge\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)=a\sqrt{b}+b\sqrt{a}\)

1

1/5<7/6

3/7<4/2

2

15<45

21>3

5=4+1

26 tháng 4 2018

1)

a) Do 5/5 = 1

=> 1/5 < 1

Do 6/6 = 1

=> 7/6 > 1

=> 7/6 > 1/5

b) Như trên ta có : 3/7 < 1

 4/2 > 1

=> 4/2 > 3/7

2)

a ) <

b) >

c) =

8 tháng 6 2018

Bài 1:a)abc1-1abc=7506

(=)(abcx10+1)-(1000+abc)=7506

(=)abcx10+1-1000-abc=7506

(=)(abcx10-abc)+1-1000=7506

(=)abcx9=7506+1000-1

(=)abcx9=8505=)abc=8505:9=945

=)a=9,b=4,c=5

6 tháng 3 2019

b = 192 bạn nha

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<\frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow1<\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}<2\)

\(\Rightarrowđpcm\)