K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Câu hỏi của Hoàng Minh Nguyễn - Toán lớp 9 - Học toán với OnlineMath

12 tháng 5 2018

 do in you free time

12 tháng 5 2018

Đặt \(x=\frac{a}{b-c};y=\frac{b}{c-a};z=\frac{c}{a-b}\)

\(\Rightarrow xy+yz+zx=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(a-b\right)\left(b-c\right)}=-1\) (Tự CM)  

Ta có: \(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\ge2\) 

=> ĐPCM 

7 tháng 8 2016

Vì vai trò bình đẳng của các ẩn  \(a,b,c\)  là như nhau nên không mất tính tổng quát, ta có thể giả sử:

\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do  \(a,b,c\)  đôi một khác nhau nên cũng không đồng thời bằng nhau)

Áp dụng bđt  \(AM-GM\)  cho từng bộ số gồm có các số không âm, ta có:

\(\left(i\right)\)  Với  \(\frac{1}{\left(a-b\right)^2}>0;\)  \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\)  \(\left(1\right)\)

\(\left(ii\right)\) Với  \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)

 \(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\)  \(\left(2\right)\)

\(\left(iii\right)\)  Với  \(\frac{1}{\left(c-a\right)^2}>0;\)  \(\frac{c-a}{16}>0\)

\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)

\(\Rightarrow\)  \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\)  \(\left(3\right)\)

Cộng từng vế ba bất đẳng thức  \(\left(1\right);\)  \(\left(2\right)\)  và   \(\left(3\right)\)  , ta được:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)

nên   \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)

Mặt khác, từ  \(\left(\alpha\right)\)  ta suy ra được:  \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)

nên   \(a+2\ge c\) hay nói cách khác  \(a-c\ge-2\)

Do đó,  \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}\)  (thỏa mãn  \(\left(\alpha\right)\)  )

7 tháng 8 2016

Vì vai trò bình đẳng của các ẩn  \(a,b,c\)  là như nhau nên không mất tính tổng quát, ta có thể giả sử:

\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do  \(a,b,c\)  đôi một khác nhau nên cũng không đồng thời bằng nhau)

Áp dụng bđt  \(AM-GM\)  cho từng bộ số gồm có các số không âm, ta có:

\(\left(i\right)\)  Với  \(\frac{1}{\left(a-b\right)^2}>0;\)  \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\)  \(\left(1\right)\)

\(\left(ii\right)\) Với  \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)

 \(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\)  \(\left(2\right)\)

\(\left(iii\right)\)  Với  \(\frac{1}{\left(c-a\right)^2}>0;\)  \(\frac{c-a}{16}>0\)

\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)

\(\Rightarrow\)  \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\)  \(\left(3\right)\)

Cộng từng vế ba bất đẳng thức  \(\left(1\right);\)  \(\left(2\right)\)  và   \(\left(3\right)\)  , ta được:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)

nên   \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)

Mặt khác, từ  \(\left(\alpha\right)\)  ta suy ra được:  \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)

nên   \(a+2\ge c\) hay nói cách khác  \(a-c\ge-2\)

Do đó,  \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(a=0;b=1;c=2\)  (thỏa mãn  \(\left(\alpha\right)\)  )

31 tháng 8 2017

Câu hỏi của Bùi Minh Quân - Toán lớp 9 - Học toán với OnlineMath

ok , cảm ơn bạn !!!

Bài toán rất hay và bổ ích !!!

8 tháng 2 2019

Đây nhé 

Đặt b + c = x ; c + a = y ;  a + b = z 

\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)

\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)

Thay vào PT đã cho ở đề bài , ta có : 

\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)

( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y) 

30 tháng 9 2017

Nhiều quá làm 1 bài tiêu biểu thôi nhé:

a/ \(A=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)

\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}\)

\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+a\right)\left(b+c\right)\left(a+b\right)\left(c+a\right)\left(b+c\right)}=1\)

30 tháng 9 2017

2 bài còn lại y chang