Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)
mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac
\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)
Với a = b = c = 1 thì
\(A=\frac{1}{1+1+1}+\frac{1}{1+1+1}+\frac{1}{1+1+1}=1\)
Với \(\hept{\begin{cases}a=b=2\\c=0,25\end{cases}}\)thì
\(A=\frac{2^3}{2+2+2^3.0,25}+\frac{2^3}{2+0,25+0,25^3.2}+\frac{0,25^3}{0,25+2+2^3.2}\approx4,841\)
Vậy A không phải là 1 hằng số với điều kiện đã cho nên đề sai. Xem lại đề nhé
Áp dụng Cauchy Schwarz dạng Engel ta có :
\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Ta có
\(VT=\frac{\frac{1}{a^2}}{\frac{3}{c}+\frac{1}{b}}+\frac{\frac{1}{b^2}}{\frac{3}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{3}{b}+\frac{1}{a}}\)
Áp dụng bất đẳng thức buniacoxki dạng phân thức:
=> \(VT\ge\frac{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{\frac{4}{a}+\frac{4}{b}+\frac{4}{c}}=\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}{4}=504\)
Dấu bằng xảy ra khi a=b=c=3/2016
Tử là mũ 2 thật hả bạn. Mũ 3 thì giải được còn mũ 2 thì vẫn chưa nghĩ ra
1 phải ko bn