K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2020

\(\frac{ab}{a+3b+2c}=\frac{ab}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Tương tự: \(\frac{bc}{b+3c+2a}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{b}{2}\right)\) ; \(\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ca}{b+c}+\frac{ca}{a+b}+\frac{c}{2}\right)\)

Cộng vế với vế:

\(A\le\frac{1}{9}\left(\frac{ab}{a+c}+\frac{bc}{a+c}+\frac{ab}{b+c}+\frac{ca}{b+c}+\frac{bc}{a+b}+\frac{ca}{a+b}+\frac{a+b+c}{2}\right)\)

\(A\le\frac{1}{9}.\frac{3}{2}\left(a+b+c\right)=1\)

Dấu "=" xảy ra khi \(a=b=c=2\)

29 tháng 9 2017

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:

\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c};\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT=\frac{1}{b+3c}+\frac{1}{c+3a}+\frac{1}{a+3b}\)

\(\ge\frac{1}{a+b+2c}+\frac{1}{2a+b+c}+\frac{1}{a+2b+c}=VP\)

29 tháng 9 2017

thanks

AH
Akai Haruma
Giáo viên
4 tháng 11 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{c+a}\geq \frac{9}{b+c+c+a+c+a}=\frac{9}{3c+2a+b}\)

\(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{a+b}\geq \frac{9}{a+c+a+b+a+b}=\frac{9}{3a+2b+c}\)

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\geq \frac{9}{a+b+b+c+b+c}=\frac{9}{3b+2c+a}\)

Cộng theo vế rồi rút gọn ta thu được

\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\geq 3\left(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\right)\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

4 tháng 11 2017

@Ace Legona bác giúp em với

1 tháng 8 2019

Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta có :

\(\frac{ab}{a+3b+2c}=\frac{ab}{9}\cdot\frac{9}{a+3b+2c}=\frac{ab}{9}\cdot\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\cdot\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

\(=\frac{1}{9}\cdot\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{ab}{2b}\right)=\frac{1}{9}\cdot\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Từ đó suy ra \(A\le\frac{1}{9}\cdot\Sigma\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=\frac{1}{9}\cdot\left(a+b+c+\frac{a+b+c}{2}\right)\)

\(=\frac{1}{9}\cdot\frac{3\left(a+b+c\right)}{2}=\frac{1}{9}\cdot\frac{3\cdot6}{2}=1\)

Vậy \(maxA=1\Leftrightarrow a=b=c=2\)

29 tháng 8 2017

Áp dụng Cauchy Schwarz dạng Engel ta có :

\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{5\left(a+b+c\right)}=\frac{a+b+c}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

5 tháng 3 2018

từ giả thiết ab+bc+ca = 3abc\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

ta có \(\frac{1}{a+2b+3c}=\frac{1}{a+c+b+c+b+c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)

tương tự ta cũng có\(\hept{\begin{cases}\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\\\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\end{cases}}\)

cộng theo vế \(\Rightarrow VT\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}\)

\("="\)khi a=b=c=....

hic :( tự đăng rồi tự giải ra luôn :(((  sorry mn

23 tháng 8 2015

Xin lỗi lúc này do thày nhìn nhầm nên nghĩ câu 2 sai đề. Để đền bù thiệt hại, xin giải lại cả hai bài cho em

Cả hai bài toán này đều sử dụng bất đẳng thức Cauchy-Schwartz. Em xem link dưới đây để biết rõ hơn: http://olm.vn/hoi-dap/question/174274.html

Câu 1. Theo bất đẳng thức Cauchy-Schwartz ta có

\(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}=\frac{1}{2a+\frac{bc}{a}}+\frac{1}{2b+\frac{ca}{b}}+\frac{1}{2c+\frac{ab}{c}}\)

\(\ge\frac{\left(1+1+1\right)^2}{2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)}=\frac{9}{2\left(a+b+c\right)+\frac{a^2b^2+b^2c^2+c^2a^2}{abc}}=\frac{9abc}{2abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}\)

\(=\frac{9abc}{\left(ab+bc+ca\right)^2}=\frac{9abc}{9}=abc.\)

Vậy ta có điều phải chứng minh.

Câu 2.  Tiếp tục sử dụng bất đẳng thức Cauchy-Schwartz

\(\frac{8}{2a+b}=\frac{4}{a+\frac{b}{2}}\le\frac{1}{a}+\frac{1}{\frac{b}{2}}=\frac{1}{a}+\frac{2}{b}.\)

Tương tự, \(\frac{48}{3b+2c}=\frac{16}{b+\frac{2c}{3}}\le4\left(\frac{1}{b}+\frac{1}{\frac{2c}{3}}\right)=\frac{4}{b}+\frac{6}{c},\)\(\frac{12}{c+3a}=\frac{4}{\frac{c}{3}+a}\le\frac{1}{\frac{c}{3}}+\frac{1}{a}=\frac{3}{c}+\frac{1}{a}.\)

Cộng ba bất đẳng thức lại ta được

\(\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\le\left(\frac{1}{a}+\frac{2}{b}\right)+\left(\frac{4}{b}+\frac{6}{c}\right)+\left(\frac{3}{c}+\frac{1}{a}\right)=\frac{2}{a}+\frac{6}{b}+\frac{9}{c}.\)    (ĐPCM).