K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

+) chứng minh 1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1=1

<=> abc/ab+b+abc + abc/bc+c+abc + 1/ac+a+1

<=> ac/ac+a+1 + ab/b+1+ab + 1/ac+a+1

<=> ac+a+1/ac+a+1

<=> 1

+) xét: a^2+2b^2+3=(a^2+b^2)+(b^2+1)+2 >= 2ab+2b+2<=1/2(ab+b+1) (1)

chứng minh tương tự:1/ b^2+2c^2+3 <= 1/2(bc+c+1) (2)

                                    1/ c^2+2a^2+3 <= 1/2(ac+a+1) (3)

cộng các vế của (1),(2),(3) ta duoc: 1/(a^2+2b^2+3) + 1/(b^2+2c^2+3) + 1/(c62+2a^2+3) <= 1/2.(1/ab+b+1 + 1/bc+c+1 + 1/ac+a+1)=1/2 (đpcm)

30 tháng 4 2016

mình làm rồi, bạn vào đây tham khảo nha: http://olm.vn/hoi-dap/question/559729.html

8 tháng 4 2016

Áp dụng bất đẳng thức  \(AM-GM\)  cho từng cặp số không âm, ta có:

\(a^2+b^2\ge2ab\)  \(\left(1\right)\)

\(b^2+1\ge2b\)  \(\left(2\right)\)

Cộng  \(\left(1\right)\)  và  \(\left(2\right)\)  vế theo vế, ta được:

\(a^2+2b^2+1\ge2ab+2b\)

\(\Rightarrow\)  \(a^2+2b^2+3\ge2ab+2b+2\)  

Vì hai vế của bất đẳng thức trên cùng dấu (do  \(a,b,c>0\)) nên ta nghịch đảo hai vế và đổi chiều bất đẳng thức:

\(\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}\)  \(\left(1\right)\)

Hoàn toàn tương tự với vòng hoán vị  \(b\)  \(\rightarrow\)  \(c\)  \(\rightarrow\)  \(a\)  \(\rightarrow\)  \(b\), ta có:

\(\frac{1}{b^2+2c^2+3}\ge\frac{1}{2bc+2c+2}\)  \(\left(2\right)\)  và  \(\frac{1}{c^2+2a^2+3}\ge\frac{1}{2ca+2a+2}\)  \(\left(3\right)\)

Cộng từng vế  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\), ta được:

\(VT\le\frac{1}{2ab+2b+2}+\frac{1}{2bc+2c+2}+\frac{1}{2ca+2a+2}=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)  \(\left(\text{*}\right)\)  

Mặt khác, xét từng phân thức  \(\frac{1}{ab+b+1};\frac{1}{bc+c+1};\frac{1}{ca+a+1}\)  kết hợp với giả thiết đã cho, nghĩa là  \(abc=1,\)  ta có:

\(\frac{1}{ab+b+1};\)  \(\frac{1}{bc+c+1}=\frac{abc}{bc+c+abc}=\frac{ab}{ab+b+1}\)  và  \(\frac{1}{ca+a+1}=\frac{abc}{ca+a+abc}=\frac{bc}{bc+c+1}=\frac{bc}{bc+c+abc}=\frac{b}{ab+b+1}\)

Do đó,  \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}=1\)  \(\left(\text{**}\right)\)

Từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\)  suy ra  \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c\)

18 tháng 4 2017

Bài 2:

Từ \(ab+bc+ca=2abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=2\end{cases}}\)

\(BDT\Leftrightarrow\frac{x^3}{\left(x-2\right)^2}+\frac{y^3}{\left(y-2\right)^2}+\frac{z^3}{\left(z-2\right)^2}\ge\frac{1}{2}\)

Ta chứng minh bổ đề \(\frac{x^3}{\left(x-2\right)^2}\ge x-\frac{1}{2}\Leftrightarrow\frac{\left(3x-2\right)^2}{\left(x-2\right)^2}\ge0\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{y^3}{\left(y-2\right)^2}\ge y-\frac{1}{2};\frac{z^3}{\left(z-2\right)^2}\ge z-\frac{1}{2}\)

Cộng theo vế 3 BĐT trên ta có: 

\(VT\ge\left(x+y+z\right)-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}=VP\)

16 tháng 6 2018

Ta có: \(a^2+b^2\ge2ab;b^2+1\ge2b\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^3+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)

Tương tự ta cũng có: 

\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\)\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}\right)\)

Mà: \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{1}{ab+b+1}+\)\(\frac{ab}{ab^2+abc+ab}+\frac{b}{bca+ab+b}=1\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(đpcm\right)\)\(\Leftrightarrow a=b=c=1\)

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

3 tháng 5 2016

Ta có :\(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\)\(>=2ab+2b+2=2\left(ab+b+1\right)\)

tương tự ta được \(b^2+2c^2+3>=2\left(bc+c+1\right)\)

                          \(c^2+2a^2+3>=2\left(ac+a+1\right)\)

theo đề bài abc=1

=> \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\)=\(\frac{1}{ab+b+1}+\frac{ab}{b+ab+1}+\frac{b}{ab+b+1}\)=1

=> VT<=1/2 

Dấu bằng khi a=b=c=1

3 tháng 5 2016

Ta có :$a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2$a2+2b2+3=(a2+b2)+(b2+1)+2$>=2ab+2b+2=2\left(ab+b+1\right)$>=2ab+2b+2=2(ab+b+1)

tương tự ta được $b^2+2c^2+3>=2\left(bc+c+1\right)$b2+2c2+3>=2(bc+c+1)

                          $c^2+2a^2+3>=2\left(ac+a+1\right)$c2+2a2+3>=2(ac+a+1)

theo đề bài abc=1

=> $\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}$1ab+b+1 +1bc+c+1 +1ca+a+1 =$\frac{1}{ab+b+1}+\frac{ab}{b+ab+1}+\frac{b}{ab+b+1}$1ab+b+1 +abb+ab+1 +bab+b+1 =1

=> VT<=1/2 

Dấu bằng khi a=b=c=1

12 tháng 5 2017

a) Áp dụng bất đẳng thức Schur với \(r=1\)

\(\Rightarrow a^3+b^3+c^3+3abc\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)

\(\Rightarrow3abc\ge a^2b+ca^2-a^3+ab^2+b^2c-b^3+c^2a+bc^2-c^3\)

\(\Rightarrow3abc\ge a^2\left(b+c-a\right)+b^2\left(a+c-b\right)+c^2\left(a+b-c\right)\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

b) Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{a^3}{b^2}+b+b\ge3\sqrt[3]{\dfrac{a^3}{b^2}.b^2}=3a\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{b^3}{c^2}+c+c\ge3b\\\dfrac{c^3}{a^2}+a+a\ge3c\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}+2\left(a+b+c\right)\ge3\left(a+b+c\right)\)

\(\Rightarrow\dfrac{a^3}{b^2}+\dfrac{b^3}{c^2}+\dfrac{c^3}{a^2}\ge a+b+c\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

c) Ta có \(abc=ab+bc+ca\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\dfrac{1}{a+2b+3c}=\dfrac{1}{a+c+2\left(b+c\right)}\le\dfrac{1}{4}\left[\dfrac{1}{a+c}+\dfrac{1}{2\left(b+c\right)}\right]\)

Tương tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{b+2c+3a}\le\dfrac{1}{4}\left[\dfrac{1}{a+b}+\dfrac{1}{2\left(a+c\right)}\right]\\\dfrac{1}{c+2a+3b}\le\dfrac{1}{4}\left[\dfrac{1}{b+c}+\dfrac{1}{2\left(a+b\right)}\right]\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{1}{4}\left[\dfrac{3}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\right]\)

\(\Rightarrow VT\le\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\) ( 1 )

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{1}{b+c}\le\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\\\dfrac{1}{c+a}\le\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{8}\left[\dfrac{1}{4}\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\right]\)

\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{8}\left[\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\right]\)

\(\Rightarrow\dfrac{3}{8}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\le\dfrac{3}{16}\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow VT\le\dfrac{3}{16}\)

\(\Rightarrow\dfrac{1}{a+2b+3c}+\dfrac{1}{b+2c+3a}+\dfrac{1}{c+2a+3b}\le\dfrac{3}{16}\) ( đpcm )

12 tháng 5 2017

mk hỏi lâu rồi bây giờ bạn mới trả lời thì có đc GP k nhỉ

29 tháng 7 2020

Bài làm:

Ta có: \(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)

Tương tự ta CM được:

\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\)

\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ca+a+1\right)}\)

Cộng vế 3 BĐT trên ta được:

\(VP\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab^2c+abc+ab}+\frac{b}{abc+ab+b}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)\)

\(=\frac{1}{2}.\frac{ab+b+1}{ab+b+1}=\frac{1}{2}.1=\frac{1}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

29 tháng 7 2020

p/s : đéo biết làm thì câm mẹ mồm lại , loại súc vật như bạn ý thì cút khỏi olm cho sạch ạ !

Theo Cauchy ta dễ có : \(b^2+1\ge2\sqrt{b^2}=2b\)

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)

Khi đó  : \(\frac{1}{a^2+2b^2+3}\le\frac{1}{2+2b+2ab}=\frac{1}{2\left(ab+b+1\right)}\)

Bằng cách chứng minh tương tự rồi cộng theo vế các bđt cùng chiều thì ta được : 

\(VT\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ca+a+1}=\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

Đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=\frac{ac}{abc.c+abc+ac}+\frac{a}{abc+ca+1}+\frac{1}{ca+a+1}=1\)

Từ đó ta thu được \(VT\le\frac{1}{2}.1=\frac{1}{2}\)hay \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le1\)

Đẳng thức xảy ra khi và chỉ khi \(a=b=c=1\)

Vậy ta có điều phải chứng minh