K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a bạn tự CM

b) \(\Delta ABH\) vuông tại H có đường cao HE

=> \(AH^2=AE.AB\left(1\right)\)

\(\Delta ACH\) vuông tại H có đường cao HF

=> \(AH^2=AF.AC\left(2\right)\)

Từ (1) và (2) =>\(AE.AB\) \(=AF.AC\)

c) Có : \(AE.AB\) \(=AF.AC\)

=> \(\frac{AE}{AC}=\frac{AF}{AB}\)

\(\Delta AEF\)\(\Delta ACB\) có :

\(\frac{AE}{AC}=\frac{AF}{AB}\)\(\widehat{BAC}:chung\)

=> \(\Delta AEF\) ~ \(\Delta ACB\)

28 tháng 7 2018

A B C H E F

a) Ta có: \(5^2+12^2=169\)

               \(13^2=169\)

suy ra:  \(5^2+12^2=13^2\)

Vậy tam giác ABC vuông tại A

Áp dụng hệ thức lượng ta có:

  \(AB.AC=AH.BC\)

\(\Leftrightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}\)

b)  Áp dụng hệ thức lượng ta có:  

\(AH^2=AE.AB\)

\(AH^2=AF.AC\)

suy ra:  \(AE.AB=AF.AC\)

c)  \(AE.AB=AF.AC\) \(\Rightarrow\)\(\frac{AE}{AC}=\frac{AF}{AB}\)

Xét  \(\Delta AEF\)và  \(\Delta ACB\)ta có:

\(\frac{AE}{AC}=\frac{AF}{AB}\)

góc A  chung

suy ra:  \(\Delta AEF~\Delta ACB\)(c.g.c)

6 tháng 9 2019

Bài này cơ bản, áp dụng hệ thức lượng là ra.

6 tháng 9 2019

$\dfrac{AB^2}{AC^2}$ = $\frac{BH}{CH}$
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó lên cạnh huyền, ta có:
$AB^2$ = BC.BH
$AC^2$ = BC. CH
Do đó: $\dfrac{AB^2}{AC^2}$ = $\dfrac{BC.BH}{BC.CH}$ = $\dfrac{BH}{CH}$ (đpcm)

$AE.AB = AF.AC$
Tam giác ABH vuông tại H có EH $\perp$ AB
Do đó: $AH^2$ = AE.AB (1)
Tam giác ACH vuông tại H có FH $\perp$ AC
Do đó: $AH^2$ = AF.AC (2)
Từ (1) và (2) suy ra AE.AB = AF.AC (đpcm)

17 tháng 6 2016

Với bài toán này, ta sử dụng hệ thức lượng trong tam giác.

A B C H E F

a. Kiểm tra thấy \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A.

\(AH=\frac{AB.AC}{BC}=\frac{60}{13}\)

b. Áp dụng hệ thức lượng, ta thấy \(AB.EA=AH^2=AF.AC\)

c. Từ kết quả câu b và góc A vuông ta suy ra được \(\Delta AEF\sim\Delta ACB\left(c-g-c\right)\).

1 tháng 7 2022

Cô giải kĩ lại phần c đc ko ạ? Yếu tố cạnh nào vậy ạ?

19 tháng 6 2016
  1. Ap dung dinh ly pitago dao vao tam giac ABC ta co AB2+AC2=52+122=169=132 . ma BC2=132
  • =>AB2+AC2=BC2=>Tam giac ABC vuong tai A
  • Ke duong cao AH .Ap dung ti so luong giac vao tam giac vuong ABC ta co \(\frac{1}{AH^2}\)= \(\frac{1}{AB^2}\)\(\frac{1}{AC^2}\)=>\(\frac{1}{AH^2}\)\(\frac{1}{5^2}\)\(\frac{1}{12^2}\)=>AH=\(\frac{60}{13}\)

3.Tu HE vuong goc voi AB , HF vuong goc voi AC =>HEA =900 , HFA =900 va BAC =900=>tu giac EHFA la hinh chu nhat =>goc AEF=EAH ma EAH=ACH vi cung phu voi goc HAC =>Ta chung minh duoc EAF ~ ABC                                                                     2.=>\(\frac{AB}{AF}\)\(\frac{AC}{AE}\)=>AB\(\times\)AE = AF\(\times\)AC

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

\(AH=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔAHB vuông tai H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

c:Ta có \(AE\cdot AB=AF\cdot AC\)

nên AE/AC=AF/AB

Xét ΔAEF và ΔACB có

AE/AC=AF/AB

góc BAC chung

Do đo: ΔAEF đồng dạng với ΔACB

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)

b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)