Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F
a) Ta có: \(5^2+12^2=169\)
\(13^2=169\)
suy ra: \(5^2+12^2=13^2\)
Vậy tam giác ABC vuông tại A
Áp dụng hệ thức lượng ta có:
\(AB.AC=AH.BC\)
\(\Leftrightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}\)
b) Áp dụng hệ thức lượng ta có:
\(AH^2=AE.AB\)
\(AH^2=AF.AC\)
suy ra: \(AE.AB=AF.AC\)
c) \(AE.AB=AF.AC\) \(\Rightarrow\)\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét \(\Delta AEF\)và \(\Delta ACB\)ta có:
\(\frac{AE}{AC}=\frac{AF}{AB}\)
góc A chung
suy ra: \(\Delta AEF~\Delta ACB\)(c.g.c)
$\dfrac{AB^2}{AC^2}$ = $\frac{BH}{CH}$
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó lên cạnh huyền, ta có:
$AB^2$ = BC.BH
$AC^2$ = BC. CH
Do đó: $\dfrac{AB^2}{AC^2}$ = $\dfrac{BC.BH}{BC.CH}$ = $\dfrac{BH}{CH}$ (đpcm)
$AE.AB = AF.AC$
Tam giác ABH vuông tại H có EH $\perp$ AB
Do đó: $AH^2$ = AE.AB (1)
Tam giác ACH vuông tại H có FH $\perp$ AC
Do đó: $AH^2$ = AF.AC (2)
Từ (1) và (2) suy ra AE.AB = AF.AC (đpcm)
Với bài toán này, ta sử dụng hệ thức lượng trong tam giác.
A B C H E F
a. Kiểm tra thấy \(AB^2+AC^2=BC^2\) nên tam giác ABC vuông tại A.
\(AH=\frac{AB.AC}{BC}=\frac{60}{13}\)
b. Áp dụng hệ thức lượng, ta thấy \(AB.EA=AH^2=AF.AC\)
c. Từ kết quả câu b và góc A vuông ta suy ra được \(\Delta AEF\sim\Delta ACB\left(c-g-c\right)\).
- Ap dung dinh ly pitago dao vao tam giac ABC ta co AB2+AC2=52+122=169=132 . ma BC2=132
- =>AB2+AC2=BC2=>Tam giac ABC vuong tai A
- Ke duong cao AH .Ap dung ti so luong giac vao tam giac vuong ABC ta co \(\frac{1}{AH^2}\)= \(\frac{1}{AB^2}\)+ \(\frac{1}{AC^2}\)=>\(\frac{1}{AH^2}\)= \(\frac{1}{5^2}\)+ \(\frac{1}{12^2}\)=>AH=\(\frac{60}{13}\)
3.Tu HE vuong goc voi AB , HF vuong goc voi AC =>HEA =900 , HFA =900 va BAC =900=>tu giac EHFA la hinh chu nhat =>goc AEF=EAH ma EAH=ACH vi cung phu voi goc HAC =>Ta chung minh duoc EAF ~ ABC 2.=>\(\frac{AB}{AF}\)= \(\frac{AC}{AE}\)=>AB\(\times\)AE = AF\(\times\)AC
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
\(AH=\dfrac{5\cdot12}{13}=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔAHB vuông tai H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
c:Ta có \(AE\cdot AB=AF\cdot AC\)
nên AE/AC=AF/AB
Xét ΔAEF và ΔACB có
AE/AC=AF/AB
góc BAC chung
Do đo: ΔAEF đồng dạng với ΔACB
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{60}{13}\left(cm\right)\)
b: Xét ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
Câu a bạn tự CM
b) \(\Delta ABH\) vuông tại H có đường cao HE
=> \(AH^2=AE.AB\left(1\right)\)
\(\Delta ACH\) vuông tại H có đường cao HF
=> \(AH^2=AF.AC\left(2\right)\)
Từ (1) và (2) =>\(AE.AB\) \(=AF.AC\)
c) Có : \(AE.AB\) \(=AF.AC\)
=> \(\frac{AE}{AC}=\frac{AF}{AB}\)
\(\Delta AEF\) và \(\Delta ACB\) có :
\(\frac{AE}{AC}=\frac{AF}{AB}\) và \(\widehat{BAC}:chung\)
=> \(\Delta AEF\) ~ \(\Delta ACB\)