Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có:
\(AB^2+AC^2=BC^2=3^2+4^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)\(\Rightarrow\Delta ABC⊥A\)
b)
Xét \(\Delta ABD\) và \(\Delta EDB\) có:
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(BD\)là cạnh chung
\(\widehat{A}=\widehat{E}=90^o\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(g.c.g\right)\)
\(\Rightarrow DA=DE\)( hai cạnh tương ứng )
\(\RightarrowĐpcm\)
c) Đề sai thì phải!
a, co: ab2+ac2=32+42=9+16=25
bc2=52=25
suy ra :ab2+ac2=bc2
suy ra: tamgiac abc vuong tai a (dinh ly pytago dao )
b, ......
c, ......
a) Ta có: \(BC^2=AB^2+AC^2\) (do \(5^2=4^2+3^2\) )
\(\Rightarrow\Delta ABC\) vuông tại A
b) Xét 2 tam giác vuông BDA và BDE, có:
Góc ABD = góc EBD (phân giác BD của góc B)
BD là cạnh chung
\(\Rightarrow\) \(\Delta\) vuông BDA = \(\Delta\) vuông BDE(cạnh huyền - góc nhọn)
\(\Rightarrow\) DA = DE(2 cạnh tương ứng)
c) Xét 2 tam giác vuông ADF và EDC, ta có:
DA = DE (chứng minh a)
góc ADF = góc EDC (đối đỉnh)
\(\Rightarrow\Delta\) vuông ADF = \(\Delta\) vuông EDC (cạnh góc vuông - góc nhọn)
Ta có: \(\Delta\)ADF là tam giác vuông tại A
\(\Rightarrow\) DF là cạnh huyền của tam giác ADF
\(\Rightarrow\) DF > DA
Mà DE = DA (\(\Delta ADF=\Delta EDC\) )
nên DF > DE
Thời gian tào hỏa đi là:
20 - 4 = 16(phút)
Quãng đường AB là:
120 x 16 = 1920(km)
Đáp số: 1920 km
xét tam giác adf và tam giác edc ta có
da=de (giải câu b)
góc fda = góc cde ( 2 góc đối đỉnh)
góc a= góc e
vậy tam giác adf = tam giác edc(g.c.g)
=>df=dc(2 cạnh tương ứng)(1)
xét tam giác dec vuông tại e ta có
dc>de(dc là cạnh huyền)(2)
từ (1)và (2) =>df=de
a, Ta có \(BC^2=AB^2+AC^2\Leftrightarrow25=9+16\)( luôn đúng )
Vậy tam giác ABC vuông tại A(pytago đảo)
b, Xét tam giác BAD và tam giác BED có
^ABD = ^EBD ; BD _ chung
Vậy tam giác BAD = tam giác BED ( ch-gn)
=> DA = DE ( 2 cạnh tương ứng )
c, Xét tam giác ADF và tam giác EDC có
DA = DE ; ^ADF = ^EDC ( đối đỉnh )
Vậy tam giác ADF = tam giác EDC ( ch-cgv)
=> DF = DC ( 2 cạnh tương ứng )
mà DC > DE ( cạnh huyền lớn hơn cạnh góc vuông tam giác DEC vuông tại E )
=> DF > DE
a: XétΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b:Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
( BC (E ( BC)?????