Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a+b+c=0\Leftrightarrow b+c=-a\)
\(\Rightarrow\left(b+c\right)^2=a^2\)(1)
\(\Rightarrow\left(a^2-b^2-c^2\right)^2=4b^2c^2\)
\(\Leftrightarrow a^4+b^4+c^4-2\left(a^2b^2-b^2c^2+2c^2a^2\right)=4b^2c^2\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Từ (1) ta có :
\(a^4+b^4+c^4=2\left(ab+bc+ac\right)^2-4abc\left(a+b+c\right)\)
\(=2\left(ab+bc+ca\right)^2\)
Vì a + b + c = 0
Ta có đpcm
p giúp mk câu b đk k? Mk đọc mãi cũng không hiểu lắm câu a thì làm đk r
\(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
Bình phương hai vế:
\(\left(a^2+b^2+c^2\right)^2=[-2\left(ab+bc+ac\right)]^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\right)\)(*)
\(\Leftrightarrow a^4+b^4+c^4=4[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)]-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)(**)
Từ (*) và (**):
\(2\left(a^4b^4c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)
Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+4\left(ab+bc+ca\right)=4\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)=4\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Rightarrow}a=b=c\)
Vì \(a+b+c=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=\left(-2ab-2bc-2ca\right)^2\)
Đến đó bạn dùng hằng đẳng thức (a+b)2 để làm tiếp nha
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
Bình phương hai vế , ta được :
\(\left(a^2+b^2+c^2\right)^2=\left[-2\left(ab+bc+ac\right)\right]^2\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\right)\) \(\left(1\right)\)
\(\Rightarrow a^4+b^4+c^4=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)\) ( vì \(a+b+c=0\) ) \(\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\):
\(2\left(a^4+b^4+c^4\right)=4\left(a^2b^2+b^2c^2+c^2a^2+2a^2bc+2ab^2c+2abc^2\right)\)
\(\Rightarrow\left(a^4+b^4+c^4\right)=2\left(ab+bc+ca\right)^2\)