Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(a^2+b^2+c^2=1\Rightarrow-1\le|a|\le1.\),tương tự với b và c
\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\)\(\Leftrightarrow abc+\left(a+b+c+ab+ac+bc+1\right)\ge0.\left(1\right)\)
Ta thấy \(\left(a+b+c+1\right)^2=a^2+b^2+c^2+2ab+2bc+2ac+2a+2b+2c+1.\)
\(=2+2a+2b+2c+2ab+2bc+2ac\)
\(=2\left(1+a+b+c+ab+ac+bc\right)\ge0\)
\(\Rightarrow1+a+b+c+ab+bc+ac\ge0\left(2\right)\)
Cộng vế theo vế của (1) và (2) Suy ra \(abc+2\left(1+a+b+c+ab+ac+bc\right)\ge0\left(đpcm\right)\)
Thay ab+bc+ac = 1 và Q ta được :
\(Q=\left(a^2+ab+ac+bc\right)\left(b^2+ab+ac+bc\right)\left(c^2+ab+ac+bc\right)\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\) là bình phương của một số hữu tỉ (đpcm)
Từ giả thiết của bài toán, ta biến đổi như sau:
\(a^2+b^2+c^2+\left(a+b+c\right)^2\le4\)
\(\Leftrightarrow a^2+b^2+c^2+ab+ac+bc\le2\)
Bất đẳng thức cần chứng minh tương đương với
\(A=\frac{ab+1}{\left(a+b\right)^2}+\frac{bc+1}{\left(b+c\right)^2}+\frac{ac+1}{\left(a+c\right)^2}\ge3\)
\(\Leftrightarrow\frac{2ab+2}{\left(a+b\right)^2}+\frac{2bc+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge6\)
Áp dụng giả thiết ta được
\(\frac{2ab+2}{\left(a+b\right)^2}+\frac{2ab+2}{\left(b+c\right)^2}+\frac{2ac+2}{\left(a+c\right)^2}\ge\text{∑}\frac{2ab+a^2+b^2+c^2+ab+bc+ac}{\left(a+b\right)^2}\)
\(=1+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+1+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c^2\right)}+1+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\)
\(=3+\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}+\frac{\left(b+a\right)\left(c+b\right)}{\left(a+c\right)^2}+\frac{\left(c+a\right)\left(a+b\right)}{\left(c+b\right)^2}\ge\)
\(3+\sqrt[3]{\frac{\left(c+a\right)\left(c+b\right)\left(b+a\right)\left(c+b\right)\left(c+a\right)\left(a+b\right)}{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}}=3+3=6\)
Vậy bài toán đã được chứng minh. Đẳng thức xảy ra khi và chỉ khi a=b=c=13√.■
Có : \(a^2+1=a^2+ab+ac+bc=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right)\left(a+c\right)\)
Tương tự : \(b^2+1=\left(a+b\right)\left(b+c\right)\)và \(c^2+1=\left(a+c\right)\left(b+c\right)\)
Suy ra : \(S=\left(a+b\right)\left(a+c\right).\left(a+b\right)\left(b+c\right).\left(a+c\right)\left(b+c\right)\)
\(\Leftrightarrow S=\left[\left(a+b\right)\left(a+c\right)\left(b+c\right)\right]^2\)là số chính phương \(\forall\)a ,b ,c nguyên !
với ab+bc+ca=1, ta có
\(a^2+1=a^2+ab+bc+ca=\left(a^2+ab\right)+\left(bc+ca\right)\)\(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)
tương tự tra có \(b^2+1=\left(a+b\right)\left(b+c\right)\)
\(c^2+1=\left(a+c\right)\left(b+c\right)\)
=> S=\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
mà a,b, c là các số nguyên => \(\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\) là số chính phương
=> S là số chính phương (ĐPCM)
Bạn chứng minh đẳng thức sau nhé: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\) \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)
Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.
Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)
Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Suy ra: x=y=z hay ab=bc=ac hay a=b=c.
Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.
Biến đổi tương đương bất đẳng thức và chú ý đến \(x+y+z=1\)Ta được
\(\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\) ( trừ cả hai vế với (x+y+z)^2 )
\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}-\left(x+y+z\right)\ge3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)
\(\Leftrightarrow\frac{\left(x-z\right)^2}{z}+\frac{\left(y-x\right)^2}{x}+\frac{\left(z-y\right)^2}{y}\ge\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)
\(\Leftrightarrow\left(x-y\right)^2\left(\frac{1}{x}-1\right)+\left(y-z\right)^2\left(\frac{1}{y}-1\right)+\left(z-x\right)^2\left(\frac{1}{z}-1\right)\ge0\)
Vì x + y + z = 1 nên 1/x; 1/y; 1/z > 1. Do đó bđt cuối cùng luôn đúng
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=3\)
Cách trâu bò :
Ta có :
\(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{â^2}\ge3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(\Leftrightarrow\left(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\right):\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge3\)
\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge3\)
+) \(ab+ac+bc=abc\Leftrightarrow a+b+c=6-\left(ab+bc+ca\right)\)
\(\Leftrightarrow\hept{\begin{cases}6-\left(ab+bc+ca\right)>0\\\left(a+b+c\right)^2=\left[6-\left(ab+bc+ca\right)\right]^2\end{cases}}\)
Còn lại phân tích nốt ra rùi áp dụng bđt cauchy là ra . ( Mình cũng ko chắc biến đổi đoạn đầu đúng chưa , có gì bạn xem lại giùm mình sai bỏ qua )
Ta có a^2+b^2+c^2=1
ma a^2 ,b^2,c^2>=0
=> a,b,c>-1
=> (a+1)(b+1)(c+1)>=0
=> 1+ab+bc+ac+a+b+c+abc>=0(1)
lai co (a+b+c+1)^2=a^2+b^2+c^2+2a+2b+2c+2ab+2bc+2ac+1
=2( 1+ab+bc+ac+a+b+c)>=0(2)
tu 1 va 2 => dpcm