K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2020

\(\left(a+b\right)\left(\frac{a}{b}+\frac{b}{a}\right)=\left(a+b\right)\left(\frac{a+b}{ab}\right)=\frac{\left(a+b\right)^2}{ab}=\frac{a^2+b^2+2ab}{ab}>=\frac{4ab}{ab}=4\)

8 tháng 4 2019

\(Để\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}-\frac{4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\left(đpcm\right)\)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

8 tháng 4 2019

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)

24 tháng 4 2019

a) ta có a>b (cộng 2 và 2 vế )

<=>  a+2 > b+2  (1)
ta có 2>-3 (cộng b vào 2 vế )

b+2>b-3  (2)

từ (1) và (2) => a+2 > b-3

20 tháng 2 2018

tự túc là hạnh phúc

24 tháng 8 2018

Ta có  : \(\hept{\begin{cases}a>2\\b>0\end{cases}}\) (gt)

\(\Rightarrow ab>2b\)  (1)

và \(\hept{\begin{cases}b>2\\a>0\end{cases}}\)(gt)

\(\Rightarrow ab>2a\)  (2)

Từ (1) và (2)  . cộng vế với vế

\(\hept{\begin{cases}ab>2b\\ab>2a\end{cases}}\)

\(\Rightarrow2ab>2\left(a+b\right)\)

Từ (1) và (2) chia 2 vế cho 2 

\(\Rightarrow ab>a+b\) (đpcm)

13 tháng 7 2020

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

13 tháng 7 2020

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

7 tháng 4 2016

Ta có: (a+b)(\(\frac{1}{a}+\frac{1}{b}\ge\left(a+b\right)\frac{4}{a+b}\ge2\sqrt{\left(a+b\right)\frac{4}{\left(a+b\right)}}=2\sqrt{4}=4\)

Dấu bằng xảy ra\(\Leftrightarrow a=b;\left(a+b\right)^2=4\Leftrightarrow a=b=1\)