Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(a+b\ge2\sqrt{ab}\Rightarrow1\ge2\sqrt{ab}\Rightarrow\dfrac{1}{2}\ge\sqrt{ab}\Rightarrow\dfrac{1}{4}\ge ab\)
Lại có theo AM-GM ta có:
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(\Rightarrow\dfrac{3}{a^2+b^2}\ge\dfrac{3}{2ab}\)
\(\Rightarrow A\ge\dfrac{3}{2ab}+\dfrac{2}{ab}\ge\dfrac{3}{2\cdot\dfrac{1}{4}}+\dfrac{2}{\dfrac{1}{4}}=14\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a+b=2\sqrt{ab}\\a+b=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=b\\a+b=1\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{2}\)
Vậy \(A_{Min}=14\) khi \(a=b=\dfrac{1}{2}\)
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}+\frac{1}{2ab+2bc+2ca}\)+2ca
Do a,b,c dương nên ADBĐT Cauchy ta được:
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}\ge\frac{4}{(a+b+c)^2}=4\)
\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow2ab+2bc+2ca\le\frac{2}{3}\)\(\Rightarrow\frac{1}{2ab+2bc+2ca}\ge\frac{3}{2}\)
Suy ra P\(\ge4+\frac{3}{2}=\frac{11}{2}\)
Dấu = khi a=b=c=\(\frac{1}{3}\)
Cauchy Schwars
\(M\ge\frac{\left(1+1+1\right)^2}{\left(a+b+c\right)^2}=\frac{9}{\left(a+b+c\right)^2}\ge9\Rightarrow M_{min}=9\Leftrightarrow a=b=c=\frac{1}{3}\)
\(M=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\)
Dau '=' xay ra khi \(a=b=c=\frac{1}{3}\)
Vay \(M_{min}=9\)
Đầu tiên,ta chứng minh BĐT phụ \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\frac{\left(x+y\right)^2-4xy}{2}\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng).Dấu "=" xảy ra khi x = y.
Và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\).Áp dụng BĐT AM-GM(Cô si),ta có; \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\left(x+y\right)}{2}}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi x = y
\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)\(\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2ab}\)
\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}\ge4+\frac{1}{\frac{1}{2}}=6\)
Dấu "=" xảy ra khi a = b và a + b = 1 tức là a=b=1/2
Vậy Min P = 6 khi a = b = 1/2
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)
Tương tự:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)
Nhân (1),(2) và (3) theo vế:
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra khi a=b=c=1/2
Áp dụng bất đẳng thức AM-GM ta có:
\(ab+\dfrac{1}{ab}\ge2\sqrt{ab.\dfrac{1}{ab}}\)
\(\Rightarrow ab+\dfrac{1}{ab}\ge2.\sqrt{1}=2.1=2\)
Dâu "=" sảy ra khi và chỉ khi \(a=b=1\)
Vậy GTNN của biểu thức là 2 đạt được khi và chỉ khi \(a=b=1\)
Chúc bạn học tốt!!!
Áp dụng bđt AM-GM ta có:
\(1\ge a+b\ge2\sqrt{ab}\) \(\Leftrightarrow1\ge4ab\)\(\Leftrightarrow\dfrac{1}{4}\ge ab\)
\(S=ab+\dfrac{1}{ab}=ab+\dfrac{1}{16ab}+\dfrac{15}{16ab}\ge2\sqrt{ab.\dfrac{1}{16ab}}+\dfrac{15}{16ab}\) \(\Leftrightarrow S\ge2.\dfrac{1}{4}+\dfrac{15}{16ab}=\dfrac{1}{2}+\dfrac{15}{16ab}\ge\dfrac{1}{2}+\dfrac{15}{16.\dfrac{1}{4}}=\dfrac{17}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\dfrac{1}{2}\)