Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15^{16}+1}{15^{17}+1}<\frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}<\frac{15^{15}+1}{15^{16}+1}\)
=> A < B
Bài 1:
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 16.m, b = 16.n vào a+b = 128, ta có:
\(16.m+16.n=128\)
\(\Rightarrow16.\left(m+n\right)=128\)
\(\Rightarrow m+n=128\div16\)
\(\Rightarrow m+n=8\)
Vì m và n nguyên tố cùng nhau
\(\Rightarrow\) Ta có bảng giá trị:
m | 1 | 8 | 3 | 5 |
n | 8 | 1 | 5 | 3 |
a | 16 | 128 | 48 | 80 |
b | 128 | 16 | 80 | 48 |
Vậy các cặp (a,b) cần tìm là:
(16; 128); (128; 16); (48; 80); (80; 48).
Bài 2:
Gọi d là ƯCLN (2n+1, 2n+3), d \(\in\) N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+3 và 2n+1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)
\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
áp dụng tc \(\frac{a}{b}< 1\Rightarrow\frac{a+m}{a+m}< 1\left(m\in N\right)\)
Ta có: \(B=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}\)\(=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow B< A\)
\(A=\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+15}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+1+14}{15^{16}+1}\)
\(\Rightarrow15A=\frac{15^{16}+1}{15^{16}+1}+\frac{14}{15^{16}+1}\)
\(\Rightarrow15A=1+\frac{14}{15^{16}+1}\)
\(B=\frac{15^{16}+1}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+15}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+1+14}{15^{17}+1}\)
\(\Rightarrow15B=\frac{15^{17}+1}{15^{17}+1}+\frac{14}{15^{17}+1}\)
\(\Rightarrow15B=1+\frac{14}{15^{17}+1}\)
Vì \(\frac{14}{15^{17}+1}< \frac{14}{15^{16}+1}\) nên \(15B< 15A\)
Vậy B < A
Ta có công thức \(\frac{a}{b}<1\)thì\(\frac{a}{b}<\frac{a+n}{b+n}\)
\(B=\frac{15^{16}+1}{15^{17}+1}<\frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=A\left(1\right)\)
từ (1) \(\Leftrightarrow A>B\)
a, Vì A, B < 1
\(A=\frac{15^{16}+1}{15^{17}+1}< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}=\frac{15^{15}+1}{15^{16}+1}\)
b, \(B=\frac{2018^{2018}+1}{2018^{2019}+1}< 1< \frac{2018^{2019}+1}{2018^{2018}+1}=A\)
A lon hon B
cum on