Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2+22+23+24+...+299+2100
=(2+22+23+24)+...(297+298+299+2100)
=2(1+2+22+23)+...+297(1+2+22+23)
=2.15+....+297.15
=15(2+...+297)
=> 2+22+23+24+...+299+2100 chia hết cho 15 (1)
Ta có: 2+22+23+24+...+299+2100 >2
=> 2+22+23+24+...+299+2100 chia hết cho 2 (2)
Từ (1) và (2) => 2+22+23+24+...+299+2100 chia hết cho 30
=> đpcm
A= 2+2^2+2^3+...+2^2004. Chứng minh rằng : A chia hết cho 6
Bài 1
a) 34 + 35 + 36 + 37 = 34(1 + 3 + 32 + 33)\
b) a)A = 1 + 3 + 32 +......399 =(1 + 3 + 32 + 33 ) + ...+(396 + 397 + 398 + 399)
= (1 + 3 + 32 + 33 ) + .. +396(1 + 3 + 32 + 33 )
= 40 + ... + 396 . 40
= 40 (1 + 3 +...+ 396) chia hết cho 40
Bài 2
a)
+)A chia hết cho 6
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)
\(A=30+5^2.30+...+5^{2002}.30\)
\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6
+)A chia hết cho 31
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)
\(A=155+5^3.155+...+5^{2001}.155\)
\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31
+) A chia hết cho 156
\(A=5+5^2+5^3+...+5^{2004}\)
\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)
\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)
\(A=780+5^4.780+...+5^{2000}.780\)
\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156
b)B=165+2^15 chia hết cho 33
ta có 165 chia hết cho 33
mà 215 ko chia hết cho 33
vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.
\(A=2^0+2^1+2^2+...+2^{2004}\)
\(A=\left(2^0+2^1+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8+2^9\right)+...+\left(2^{2000}+2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)
\(A=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\cdot\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{2000}\cdot\left(2^0+2^1+2^2+2^3+2^4\right)\)
\(A=31+2^5\cdot31+...+2^{2000}\cdot31\)
\(A=31\cdot\left(1+2^5+...+2^{2000}\right)\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
A = (2004 + 20042 ) + ( 20043 + 20044)+ (20045 + 20046) +............................+ (20048 + 200410)
A = 2004 ( 1 + 2004 ) + 20043 ( 1 +2004 ) + .... + 20048 ( 1+ 2004 )
A = 2004.2005 + 20043.2005 +....+20048.2005
A = 2005.( 2004 + 20042 + 20043 + 20044 + 20045 + 20046 +............................+ 20048 + 200410 )
Vậy A chia hết cho 2005
a ) 10^2002+8=1000...008(có 2001 chữ số 0)
=>chia hết cho 2(tận cìng là 8)
tổng các chữ số 1+0+8=9 chia hết cho 9
=>số chia hết cho 9
b ) 10^2004+14=100...0014(có 2002 chữ số 0)
=>chia hết cho 2(tận cùng là 4)
tổng các chữ số 1+0+1+4=6 chia hết 3
=>số chia hết cho 3
1/
10^2002+8=1000...008(có 2001 chữ số 0)
=>chia hết cho 2(tận cìng là 8)
tổng các chữ số 1+0+8=9 chia hết cho 9
=>số chia hết cho 9
2/
10^2004+14=100...0014(có 2002 chữ số 0)
=>chia hết cho 2(tận cùng là 4)
tổng các chữ số 1+0+1+4=6 chia hết 3
=>số chia hết cho 3
tich nha
A=2+2^2+2^3+...+2^2003+2^2004
=1(2+2^2)+2^3(2+2^2)+...+2^2002(2+2^2)
=(1+2^3+...+2^2002).6
=>A chia hết cho 6.
A = 2 + 22 + 23 + 24 +.....+ 22004
A = (2 + 22) + (23 + 24) +.....+ (22003 + 22004)
A = 1(2 + 22) + 22(2 + 22) +.....+ 22002(2 + 22)
A = 6(1 + 22 +....+ 22002) chia hết cho 6
KL: A chia hết cho 6 (Đpcm)