\(\dfrac{1}{1.\left(2n-1\right)}+\dfrac{1}{3.\left(2n-3\right)}+...+\dfrac{1}{3.\left(2n...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}=\dfrac{1}{2}\cdot\dfrac{2n}{2n+1}=\dfrac{n}{2n+1}\)

b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)

 

a: \(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{2n+1-1}{2n+1}\)

\(=\dfrac{n}{2n+1}\)

b: \(=\dfrac{1}{4}\left(\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{\left(4n-3\right)\left(4n+1\right)}\right)\)

\(=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{4n-3}-\dfrac{1}{4n+1}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{4n}{4n+1}=\dfrac{n}{4n+1}\)

a, \(\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right)\)

\(=\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

\(=\left(1-\dfrac{1}{4}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

\(=\left(1-\dfrac{1}{16}\right)\left(1+\dfrac{1}{16}\right)...\left(1+\dfrac{1}{2^{2n}}\right).2\)

...

\(=\left(1-\dfrac{1}{2^{2n}}\right)\left(1+\dfrac{1}{2^{2n}}\right).2=\left(1-\dfrac{1}{2^{4n}}\right).2=2-\dfrac{1}{2^{4n-1}}\)

Vậy ...

b,Sửa đề: \(\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right)\)

Ta có:\(\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right)\)

\(=\left(10-1\right).\left(10+1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

\(=\left(10^2-1\right).\left(10^2+1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

\(=\left(10^4-1\right).\left(10^4+1\right)...\left(10^{2n}+1\right).\dfrac{1}{9}\)

...

\(=\left(10^{2n}-1\right)\left(10^{2n}+1\right).\dfrac{1}{9}=\left(10^{4n}-1\right).\dfrac{1}{9}=\dfrac{10^{4n}}{9}-\dfrac{1}{9}\)

Vậy ...

áp dụng hằng đẳng thức (a+b)(a-b)=a^2-b^2 Minh Hoang Hai

1: =>3x+1=4

=>3x=3

hay x=1

2: \(\Leftrightarrow172\cdot x^2=\dfrac{1}{2^3}+\dfrac{7^9}{98^3}=\dfrac{1}{2^3}+\dfrac{7^9}{7^6\cdot2^3}\)

\(\Leftrightarrow172\cdot x^2=\dfrac{1}{2^3}+\dfrac{7^3}{2^3}=\dfrac{344}{2^3}\)

\(\Leftrightarrow x^2=\dfrac{1}{4}\)

=>x=1/2 hoặc x=-1/2

3: \(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{9}=\dfrac{4}{9}\\x-\dfrac{2}{9}=-\dfrac{4}{9}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{9}\end{matrix}\right.\)

4: =>x+2=0 và y-1/10=0

=>x=-2 và y=1/10

AH
Akai Haruma
Giáo viên
21 tháng 4 2018

Lời giải:
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow \frac{a+b}{ab}=\frac{1}{a+b+c}-\frac{1}{c}=\frac{-(a+b)}{c(a+b+c)}\)

\(\Leftrightarrow (a+b)\left(\frac{1}{ab}+\frac{1}{c(a+b+c)}\right)=0\)

\(\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0\)

\(\Leftrightarrow (a+b)(b+c)(c+a)=0\)

Ta sẽ cm \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}(*)\)

Thật vậy: \((*)\Leftrightarrow \frac{a^{2n+1}+b^{2n+1}}{(ab)^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}-\frac{1}{c^{2n+1}}\)

\(\Leftrightarrow \frac{a^{2n+1}+b^{2n+1}}{(ab)^{2n+1}}=\frac{-(a^{2n+1}+b^{2n+1})}{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}\)

\(\Leftrightarrow (a^{2n+1}+b^{2n+1})\left(\frac{1}{(ab)^{2n+1)}}+\frac{1}{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}\right)=0\)

\(\Leftrightarrow (a^{2n+1}+b^{2n+1}).\frac{c^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})+(ab)^{2n+1}}{(abc)^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}=0\)

\(\Leftrightarrow \frac{(a^{2n+1}+b^{2n+1})(c^{2n+1}+b^{2n+1})(c^{2n+1}+a^{2n+1})}{abc^{2n+1}(a^{2n+1}+b^{2n+1}+c^{2n+1})}=0\)

Thấy rằng

\((a^{2n+1}+b^{2n+1})(b^{2n+1}+c^{2n+1})(c^{2n+1}+a^{2n+1})=(a+b).X.(b+c).Y.(c+a).Z\)

\(=0\) (do \((a+b)(b+c)(c+a)=0\) )

Do đó đẳng thức $(*)$ cần chứng minh đúng.

-------------------

Ta tiếp tục chứng minh \(\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\frac{1}{(a+b+c)^{2n+1}}(**)\)

\(\Leftrightarrow a^{2n+1}+b^{2n+1}+c^{2n+1}=(a+b+c)^{2n+1}\)

Thật vậy:

\((a+b)(b+c)(c+a)=0\)\(\Rightarrow \left[\begin{matrix} a+b=0\\ b+c=0\\ c+a=0\end{matrix}\right.\)

Không mất tổng quát giả sử \(a+b=0\)

\(\Rightarrow \left\{\begin{matrix} a^{2n+1}+b^{2n+1}+c^{2n+1}=(-b)^{2n+1}+b^{2n+1}+c^{2n+1}=c^{2n+1}\\ (a+b+c)^{2n+1}=(0+c)^{2n+1}=c^{2n+1}\end{matrix}\right.\)

\(\Rightarrow a^{2n+1}+b^{2n+1}+c^{2n+1}=(a+b+c)^{2n+1}\)

Do đó $(**)$ đúng

Từ $(*)$ và $(**)$ ta có đpcm.

23 tháng 4 2018

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Xét \(a=-b\) thì ta có

\(\left\{{}\begin{matrix}\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{c^{2n+1}}\\\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{c^{2n+1}}\\\dfrac{1}{\left(a+b+c\right)^{2n+1}}=\dfrac{1}{c^{2n+1}}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{\left(a+b+c\right)^{2n+1}}\)

Tương tự cho 2 bộ số còn lại ta được ĐPCM.

6 tháng 4 2018

Thừa số tổng quát:

\(1+\dfrac{1}{n^2+2n}=\dfrac{n^2+2n+1}{n^2+2n}=\dfrac{\left(n+1\right)^2}{\left(n+1\right)^2-1}\)

Đặt: \(\left(n+1\right)^2=t\ge0\) biểu thức được phát biểu dưới dạng: \(\dfrac{t}{t-1}\) Thay vào bài toán tìm được giá trị.

17 tháng 5 2017

câu a: 14a + 6b = 84 + ab

<=> 14a + 6b - 84 - ab =0

<=> (14a -84) + (6b -ab)=0

<=> 14( a- 6) - b(a-6)=0

<=> (a - 6)(14-b) = 0

Vậy a=6, b=14

20 tháng 5 2017

Đặt \(A=\dfrac{n}{4+n^4}\)

\(=\dfrac{n}{n^4+4n^2+4-4n^2}\)

\(=\dfrac{n}{\left(n^2+2\right)^2-\left(2n\right)^2}\)

\(=\dfrac{n}{\left(n^2+2-2n\right)\left(n^2+2+2n\right)}\)

\(\Rightarrow4A=\dfrac{4n}{\left(n^2-2n+2\right)\left(n^2+2n+2\right)}\)

\(=\dfrac{1}{n^2-2n+2}-\dfrac{1}{n^2+2n+2}\)

Đặt \(P=\dfrac{1}{4+1^4}+\dfrac{3}{4+3^4}+...+\dfrac{2n-1}{4+\left(2n-1\right)^4}\)

\(\Rightarrow4P=\dfrac{4}{4+1^4}+\dfrac{12}{4+3^4}+...+\dfrac{4\left(2n-1\right)}{4+\left(2n-1\right)^4}\)

\(=\dfrac{1}{1^2-2\times1+2}-\dfrac{1}{1^2+2\times1+2}\)

\(+\dfrac{1}{3^2-2\times3+2}-\dfrac{1}{3^2+2\times3+2}+...+\)

\(\dfrac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\dfrac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\)

\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{17}+...+\)

\(\dfrac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\dfrac{1}{4n^2-4n+1+4n-2+2}\)

\(=1-\dfrac{1}{4n^2+1}\)

\(\Rightarrow P=\dfrac{1}{4}-\dfrac{1}{4\left(4n^2+1\right)}\)