Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A\in Z\Leftrightarrow\left(n+8\right)⋮\left(2n-5\right)\)
Giả sử\(\left(n+8\right)⋮\left(2n-5\right)\)
\(\Leftrightarrow2\left(n+8\right)⋮\left(2n-5\right)\)
\(\Leftrightarrow2n+16⋮\left(2n-5\right)\)
\(\Leftrightarrow2n-5+21⋮\left(2n-5\right)\)
Do \(2n-5⋮2n-5\)
\(\Rightarrow21⋮\left(2n-5\right)\)
\(\Rightarrow\left(2n-5\right)\inƯ\left(21\right)\)
Ta có bảng sau:
2n-5 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
2n | -16 | -2 | 2 | 4 | 6 | 8 | 12 | 26 |
n | -8 | -1 | 1 | 2 | 3 | 4 | 6 | 13 |
Do \(n\inℕ^∗\Rightarrow n\in\left\{1;2;3;4;6;13\right\}\)
a, Nếu n chẵn
=> n-4 chẵn
=> (n-4).(n-15) chẵn
Nếu n lẻ
=> n-15 chẵn
=> (n-4).(n-15) chẵn
b, n2 - n - 1 = n(n-1)-1
Nếu n chẵn
=> n(n-1) chẵn
=> n(n-1)-1 lẻ
=> n2 - n - 1 lẻ
Nếu n lẻ
=> n-1 chẵn
=> n(n-1) chẵn
=> n(n-1)-1 lẻ
=> n2 - n - 1 lẻ
NÊN VÀO ĐỀ THI HOẶC BÀI TOÁN LIÊN QUAN NHA BẠN!
\(n+6⋮n+2\)
\(\Leftrightarrow n+2+4⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Rightarrow4⋮n+2\)
\(\Rightarrow n+2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{-1;-3;0;-4;2;-6\right\}\)
A=n2+17n+70 cùng tính chẵn lẻ vs n2+17n
+) n chẵn=> n2 và 17n đều chẵn => A chẵn
+) n lẻ => n2 và 17n đều lẻ => A chẵn
vậy A chẵn not n