Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
ta có 3^3 = 27 chia 13 dư 1
=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1)
5^2 = 25 chia 13 dư (-1)
=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2)
Từ (1); (2)
=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0
hay 3^2010+5^2010 chia hết cho 13.
bài 1:
Ta có
32010=(33)670≡1670(mod13)32010=(33)670≡1670(mod13)
Mà 52010=(52)1005≡(−1)1005(mod13)52010=(52)1005≡(−1)1005(mod13)
Từ đó suy ra 32010+5201032010+52010 chia hết cho 13
1.Gộp 3 số vào thành 1 tổng rồi tính:
(1+2^1+2^2)+(2^3+2^4+2^5)+....+(2^37+2^38+2^39)
=1*(1+2^1+2^2)+2^3*(1+2^1+2^2)+....+2^37*(1+2^1+2^2)
=1*15+2^3*15+...+2^37*15
=15*(1+2^3+...+2^39) chia hết cho 15
4)
b) \(A=4+4^3+4^5+.....+4^{2015}\)
\(A=\left(4+4^3\right)+\left(4^5+4^7\right)+.....+\left(4^{2013}+4^{2015}\right)\)
\(A=4\left(1+4^2\right)+4^5\left(1+4^2\right)+....+4^{2013}\left(1+4^2\right)\)
\(A=4.17+4^5.17+....+4^{2013}.17\)
\(A=\left(4+4^5+......+4^{2013}\right)17\) chia hết cho 5
Vậy A chia hết cho 5
A = ( 17^n + 1 )( 17^n + 2 )
=> A = ( 17^n x 17^n + 17^n )+( 2 x 17^n + 2 )
=> A = 17^n x 17^n + 17^n + 2 x 17^n + 2 ( bỏ dấu ngoặc )
=> A= 17^n x 17^n + ( 17^n +2 x 17^n ) +2
=> A= 17^n x 17^n + 3 x 17^n + 2
Mà 3 x 17^n chia hết cho 3
=> Tích A chia hết cho 3
Câu 1: Chú ý: \(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+....b^{n-1}\right)\)
Nghĩa là chúng ta luôn có a^n- b^n chia hết co a-b, với a, b nguyên
\(6^{2n}+19^n-2^n.2=\left(36^n-2^n\right)+\left(19^n-2^n\right)\)
\(36^n-2^n⋮34\Rightarrow36^n-2^n⋮17\)
\(19^n-2^n⋮17\)
Vậy ....