\(\frac{b^2-c^2}{a^2+3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2016

Mình ko biết vì chưa học!!!

Cũng là bạn bè thì chỉ có thể nói:

Chúc cậu may mắn trong khi giải bài toán này!!!

Có ai giúp cậu ấy nha!!!

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 1:

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt\). Khi đó:

a)

\(\frac{a^2}{a^2+b^2}=\frac{(bt)^2}{(bt)^2+b^2}=\frac{b^2t^2}{b^2(t^2+1)}=\frac{t^2}{t^2+1}(1)\)

\(\frac{c^2}{c^2+d^2}=\frac{(dt)^2}{(dt)^2+d^2}=\frac{d^2t^2}{d^2(t^2+1)}=\frac{t^2}{t^2+1}(2)\)

Từ $(1);(2)$ suy ra đpcm.

b)

\(\left(\frac{a+c}{b+d}\right)^2=\left(\frac{bt+dt}{b+d}\right)^2=\left(\frac{t(b+d)}{b+d}\right)^2=t^2(3)\)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{(bt)^2+(dt)^2}{b^2+d^2}=\frac{t^2(b^2+d^2)}{b^2+d^2}=t^2(4)\)

Từ $(3);(4)\Rightarrow \left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}$ (đpcm)

AH
Akai Haruma
Giáo viên
9 tháng 11 2019

Bài 2:

Từ $a^2=bc\Rightarrow \frac{a}{c}=\frac{b}{a}$

Đặt $\frac{a}{c}=\frac{b}{a}=t\Rightarrow a=ct; b=at$. Khi đó:

a)

$\frac{a^2+c^2}{b^2+a^2}=\frac{(ct)^2+c^2}{(at)^2+a^2}=\frac{c^2(t^2+1)}{a^2(t^2+1)}=\frac{c^2}{a^2}=(\frac{c}{a})^2=\frac{1}{t^2}(1)$

Và:

$\frac{c}{b}=\frac{a}{tb}=\frac{a}{t.at}=\frac{1}{t^2}(2)$

Từ $(1);(2)$ suy ra đpcm.

b)

$\left(\frac{c+2019a}{a+2019b}\right)^2=\left(\frac{c+2019a}{ct+2019at}\right)^2=\left(\frac{c+2019a}{t(c+2019a)}\right)^2=\frac{1}{t^2}(3)$

Từ $(2);(3)$ suy ra đpcm.

4 tháng 4 2020

PT đã cho suy ra thành

\(\left(\frac{x^{2010}}{a^2+b^2+c^2+d^2}-\frac{x^{2010}}{a^2}\right)+\left(\frac{y^{2010}}{a^2+b^2+c^2+d^2}-\frac{y^{2010}}{b^2}\right)+\left(\frac{z^{2010}}{a^2+b^2+c^2+d^2}-\frac{z^{2010}}{c^2}\right)\)

\(+\left(\frac{t^{2010}}{a^2+b^2+c^2+d^2}-\frac{t^{2010}}{d^2}\right)=0\)

\(=>x^{2010}\left(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\right)+\left(tương\right)Tựnha=0\)

Do

\(\frac{1}{a^2+b^2+c^2+d^2}-\frac{1}{a^2}\ne0\)

máy cái bạn tự suy ra cx thế

\(=>x^{2010}=y^{2010}=z^{2010}=t^{2010}=0=>x=y=z=t=0\)

ta có 

\(T=x^{2011}+y^{2011}+z^{2011}+t^{2011}=0+0+0+0=0\)

4 tháng 4 2020

Ta có:

\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)

<=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)

\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)=0\)(1)

Lại có: \(x^{2010};y^{2010};z^{2010};t^{2010}\ge0;\forall x,y,z,t\)

và với mọi a; b ; c ; d khác 0 có:

\(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)

\(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);

\(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\);

\(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}>0\)

=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

\(t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

=> \(x^{2010}\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+y^{2010}\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\)

\(+z^{2010}\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)+t^{2010}\left(\frac{1}{d^2}-\frac{1}{a^2+b^2+c^2+d^2}\right)\ge0\)

Như vậy (1) xảy ra<=> \(x^{2010}=y^{2010}=z^{2010}=t^{2010}=0\)

<=> x = y = z = t = 0

Thay vào T ta có : T = 0

5 tháng 8 2019

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\Rightarrow a=b=c\Rightarrow M=1\)

5 tháng 8 2019

\(b^2=ac;c^2=bd\Rightarrow\frac{b}{c}=\frac{a}{b};\frac{c}{d}=\frac{b}{c}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

6 tháng 10 2019

a) Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}.\)

\(\Leftrightarrow\frac{a+2}{b+3}=\frac{a-2}{b-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a+2+a-2}{b+3+b-3}=\frac{2a}{2b}=\frac{a}{b}\) (1)

\(\frac{a+2}{b+3}=\frac{a-2}{b-3}=\frac{a}{b}=\frac{4}{6}=\frac{2}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{2}{3}\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\left(đpcm\right).\)

Chúc bạn học tốt!

8 tháng 9 2016

a . 

\(b^2\)= ac => \(\frac{a}{b}\)=\(\frac{b}{c}\)

c\(^2\)= bd => \(\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}\)=\(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)( theo \(\frac{t}{c}\)của dãy tỉ số = )

Mà \(\frac{a^3}{b^3}\)\(\frac{a}{b}\)x   \(\frac{a}{b}\).x   \(\frac{a}{b}\)  =   \(\frac{a}{b}\)    x\(\frac{b}{c}\)x\(\frac{c}{d}\)\(\frac{a}{d}\)

Nên \(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)=\(\frac{a}{d}\)

8 tháng 9 2016

 x-y=2<=>x=y+2 
thay vào Q được: 
Q=(y+2)^2+y^2-(y+2)y 
=y^2+2y+4 
=(y+1)^2+3 
=>A>=3 
dấu bằng xảy ra <=>y= -1 và x=1 
vậy min Q=3