K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2017

Ta có: \(a^{2014}+b^{2014}+c^{2014}=a^{1007}b^{1007}+b^{1007}c^{1007}+c^{1007}a^{1007}\)

\(\Rightarrow a=b=c\) ( tự CM lấy: nhân 2 vế với 2, chuyển vế, nhóm thành từng hằng đẳng thức rồi cm hoặc CM tương tự như bài \(a^2+b^2+c^2=ab+bc+ca\) )

\(\Rightarrow M=\left(a-b\right)^{20}+\left(b-c\right)^{11}+\left(a-c\right)^{2014}=0\)

Vậy M = 0

NV
6 tháng 11 2019

Áp dụng BĐT \(x^2+y^2\ge2xy\) ta có:

\(15a^2+15b^4\ge30ab^2\)

\(3b^4+3c^2\ge6b^2c\)

\(1004a^2+1004c^2\ge2008ca\)

Cộng vế với vế: \(1019a^2+18b^4+1007c^2\ge30ab^2+6b^2c+2008ca\)

Dấu "=" xảy ra khi \(a=b^2=c\)

22 tháng 7 2020

\(ab=cd\Rightarrow\frac{a}{c}=\frac{d}{b}\)

Đặt \(\frac{a}{c}=\frac{d}{b}=k\Rightarrow\hept{\begin{cases}a=ck\\d=bk\end{cases}}\)

Khi đó : a2014 + b2014 + c2014 + d2014

= (ck)2014 + b2014 + c2014 + (bk)2014

= c2014(k2014 + 1) + b2014(k2014 + 1)

= (k2014 + 1)(c2014 + b2014\(⋮\)(c2014 + b2014)

=> a2014 + b2014 + c2014 + d2014 là hợp số 

22 tháng 7 2020

trình bày theo cách khác

gọi ƯCLN (a,c)=m \(\Rightarrow\hept{\begin{cases}a=ma_1\\c=mc_1\end{cases}\left(a_1;c_1\inℤ\right),\left(a_1,c_1\right)=1}\)

vì a,b,c,d là số nguyên thỏa mãn ab=cd

\(\Rightarrow ma_1b=mc_1d\Leftrightarrow a_1b=c_1d\)nên \(a_1b⋮c_1\)

mà (a1;c1)=1 nên b chia hết cho c1 => b=nc1 => d=na1, do đó

\(a^{2014}+b^{2014}+c^{2014}+d^{2014}=\left(ma_1\right)^{2014}+\left(nc_1\right)^{2014}+\left(mc_1\right)^{2014}+\left(na_1\right)^{2014}\)

\(=a_1^{2014}\left(m^{2014}+n^{2014}\right)+c_1^{2014}\left(m^{2014}+n^{2014}\right)\)

\(=\left(m^{2014}+n^{2014}\right)\left(a_1^{2014}+c_1^{2014}\right)\)là hợp số