Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng \(\forall a,b\) )
=>đpcm
Cô si
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}\cdot\frac{ca}{b}}=2c\)
\(\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}\cdot\frac{ab}{c}}=2a\)
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}\cdot\frac{bc}{a}}=2b\)
Cộng lại ta có:
\(2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\Rightarrowđpcm\)
trả lời
dùng bất đẳng thức cosi cho 2 số ko âm
sử dụng cộng mỗi cặp trên
đc 3 cặp
cộng lại là ra
Nhìn giả thiết thấy nản quả:(
BĐT \(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)\left(a+b\right)}{a^2+b^2}\le3\left(ab+bc+ca\right)\) (nhân ab +bc +ca vào hai vế)
\(\Leftrightarrow\Sigma_{cyc}\frac{\left(ab+bc+ca\right)\left(a+b\right)}{a^2+b^2}\le3\left(a+b+c\right)\) (chú ý giả thiết ab + bc +ca = a + b + c)
\(VT=\Sigma_{cyc}\frac{ab\left(a+b\right)}{a^2+b^2}+\Sigma_{cyc}\frac{c\left(a+b\right)^2}{a^2+b^2}\)
\(\le\Sigma_{cyc}\frac{ab\left(a+b\right)}{2ab}+\Sigma_{cyc}\frac{2c\left(a^2+b^2\right)}{a^2+b^2}=3\left(a+b+c\right)\)
Vậy ta có đpcm.Đẳng thức xảy ra khi a = b = c
Vì a;b;c > 0 nên theo bất đẳng thức Cauchy ta có :
\(\frac{ab}{a+b}\le\frac{ab}{2\sqrt{ab}}=\frac{\sqrt{ab}}{2}\le\frac{\frac{a+b}{2}}{2}=\frac{a+b}{4}\) (1)
\(\frac{bc}{b+c}\le\frac{bc}{2\sqrt{bc}}=\frac{\sqrt{bc}}{2}\le\frac{\frac{b+c}{2}}{2}=\frac{b+c}{4}\) (2)
\(\frac{ac}{a+c}\le\frac{ac}{2\sqrt{ac}}=\frac{\sqrt{ac}}{2}\le\frac{\frac{a+c}{2}}{2}=\frac{a+c}{4}\) (3)
Cộng vế với vế của (1) ; (2) ; (3) lại ta được :
\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\le\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\) (đpcm)
Đề chơi căng nhỉ?
a) Dễ chứng minh VP =< 3
BĐT \(\Leftrightarrow\left(\frac{a+b}{1+a}-1\right)+\left(\frac{b+c}{1+b}-1\right)+\left(\frac{c+a}{1+c}-1\right)\ge0\)
\(\Leftrightarrow\frac{b-1}{1+a}+\frac{c-1}{1+b}+\frac{a-1}{1+c}\ge0\)
\(\Leftrightarrow\frac{\left(b-1\right)^2}{\left(1+a\right)\left(b-1\right)}+\frac{\left(c-1\right)^2}{\left(1+b\right)\left(c-1\right)}+\frac{\left(a-1\right)^2}{\left(1+c\right)\left(a-1\right)}\) >=0
Áp dụng BĐT Cauchy-Schwarz dạng Engel vào VT ta có đpcm.
P/s: Èo, sao đơn giản thế nhỉ? Em có làm sai chỗ nào chăng?
Lần sau đăng ít 1 thôi đăng nhiều ngại làm, bn đăng nhiều nên tui hướng dẫn sơ qua thôi tự làm đầy đủ vào vở
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(a^4+b^4\ge2a^2b^2;b^4+c^4\ge2b^2c^2;c^4+a^4\ge2c^2a^2\)
Cộng theo vế 3 BĐT trên rồi thu gọn
\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Áp dụng tiếp BĐT AM-GM
\(a^2b^2+b^2c^2=b^2\left(a^2+c^2\right)\ge2b^2ac\)
Tương tự rồi cộng theo vế có ĐPCM
Bài 2:
Quy đồng BĐT trên ta có:
\(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\frac{a}{b}-\frac{b}{a}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2\left(a^2+ab+b^2\right)}{a^2b^2}\ge0\) (luôn đúng)
Bài 4: Áp dụng BĐT AM-GM
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\Rightarrow\frac{a^3+b^3}{ab}\ge\frac{ab\left(a+b\right)}{ab}=a+b\)
Tương tự rồi cộng theo vế
Bài 5: sai đề tự nhien có dấu - :v nghĩ là +
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}=\frac{\left(ab+bc+ac\right)^2}{ab+bc+ca}=ab+bc+ac\)
\("="\Leftrightarrow a=b=c\)
\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+ac+bc}\ge\frac{\left(ab+ac+bc\right)^2}{ab+ac+bc}=ab+ac+bc\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Chỉ cần chú ý:
\(\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2c\)
Từ đó thiết lập 2 BĐT còn lại tương tự rồi cộng theo vế thu được đpcm.
Áp dụng BĐT Bunhiacopxky :
\(\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)\left(abc+abc+abc\right)\ge\left(ab+bc+ac\right)^2\)
\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge\frac{\left(ab+bc+ac\right)^2}{3abc}\left(1\right)\)
Áp dụng BĐT Cauchy
\(\hept{\begin{cases}a^2b^2+b^2c^2\ge2ab^2c\\a^2b^2+c^2a^2\ge2a^2bc\Rightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\\b^2c^2+c^2a^2\ge2abc^2\end{cases}}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2\ge3\left(a+b+c\right)\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c\)
Chúc bạn học tốt !!!