Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô-si ta có :
\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge3\sqrt[3]{\frac{1}{a^3b^3c^3}}=\frac{3}{abc}\)
Dấu = xảy ra khi \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\) Hay \(a=b=c\) ( đề cho )
Vậy ta có đpcm : \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
(a+b+c)2=a2+b2+c2
=>2(ab+bc+ac)=0
=>ab+bc+ac=0
=> bc=-ab-ac
=>\(\frac{a^2}{a^2+2bc}=\frac{a^2}{a^2-ac-ab+bc}\)=\(\frac{a^2}{\left(a-c\right)\left(a-b\right)}\)
Tuong tu => \(\frac{b^2}{b^2+2ac}=....\)
\(\frac{c^2}{c^2+2ab}=...\)
=> \(\frac{a^2}{a^2+2bc}+....\)=\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}\)+...
=\(\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
=1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Leftrightarrow ab+bc+ca=1\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)\)
\(\left(a+b\right)\left(a+c\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(c+a\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)
Áp dụng bất đẳng thức Cauchy - Schwarz với 2 bộ số \(\left(a,b,c\right)\)và \(\left(1,1,1\right)\)ta có:
\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a.1+b.1+c.1\right)^2=1\)
\(\Rightarrow a^2+b^2+c^2\ge\frac{1}{3}\).
Dấu \(=\)xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\).
Còn cách khác :3
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có ngay :
\(a^2+b^2+c^2=\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\ge\frac{\left(a+b+c\right)^2}{1+1+1}=\frac{1^2}{3}=\frac{1}{3}\)
Đẳng thức xảy ra <=> a = b = c = 1/3
Vậy ta có điều phải chứng minh