K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

a² + b² + c² + d² + e² ≥ a(b + c + d + e) 

Ta có: a² + b² + c² + d² + e² 

= (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) 

Lại có: (a/2 - b)² ≥ 0 <=> a²/4 - ab + b² ≥ 0 <=> a²/4 + b² ≥ ab 

Tương tự ta có: 

. a²/4 + c² ≥ ac 
. a²/4 + d² ≥ ad 
. a²/4 + e² ≥ ae 

--> (a²/4 + b²) + (a²/4 + c²) + (a²/4 + d²) + (a²/4 + e²) ≥ ab + ac + ad + ae 

<=> a² + b² + c² + d² + e² ≥ a(b + c + d + e) --> đ.p.c.m 

Dấu " = " xảy ra <=> a/2 = b = c = d = e

30 tháng 9 2017

Áp dụng bđt Cô-si: \(a^2+b^2+c^2+d^2\)\(\ge4\sqrt[4]{a^2.b^2.c^2.d^2}\)\(=4\sqrt[4]{\left(abcd\right)^2}=4\sqrt[4]{1^2}=4;\)

\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)=ab+ac+bc+bd+dc+da\)

\(\ge6\sqrt[6]{ab.ac.bc.bd.dc.da}=6\sqrt[6]{\left(abcd\right)^3}=6\sqrt[6]{1^3}=6\)

=>\(a^2+b^2+c^2+d^2\)\(a\left(b+c\right)+b\left(c+d\right)+d\left(c+a\right)\ge4+6=10\)

Dấu "=" xảy ra khi a=b=c=d=1

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:

Áp dụng BĐT Cô-si cho các số không âm ta có:
\(a^2+\frac{1}{4}\geq 2\sqrt{a^2.\frac{1}{4}}=|a|\geq a\)

\(b^2+\frac{1}{4}\geq 2\sqrt{b^2.\frac{1}{4}}=|b|\geq b\)

\(c^2+\frac{1}{4}\geq 2\sqrt{c^2.\frac{1}{4}}=|c|\ge c\)

\(d^2+\frac{1}{4}\geq 2\sqrt{d^2.\frac{1}{4}}=|d|\geq d\)

Cộng theo vế và rút gọn:

\(a^2+b^2+c^2+d^2+1\geq a+b+c+d=2\)

\(\Rightarrow a^2+b^2+c^2+d^2\geq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=d=\frac{1}{2}$

29 tháng 12 2017

Áp dụng BĐT Bunhiacopxki , ta có: 

Với a,b,c,d >0

\(\left(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\right)\left[a\left(b+c\right)+b\left(c+d\right)+c\left(d+a\right)+d\left(a+b\right)\right]\ge\left(a+b+c+d\right)^2\)

\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\right)\ge\frac{\left(a+b+c+d\right)^2}{ab+bc+cd+da+2ca+2bd}\)

Ta cần chứng minh : 

\(\left(a+b+c+d\right)^2\ge2\left(ab+bc+cd+da+2ac+2bd\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\ge2ca+2bd\)

\(\Leftrightarrow\left(a-c\right)^2+\left(b-d\right)^2\ge0\)(đúng) 

\(\Leftrightarrow dpcm\)

2 tháng 8 2019

giúp mik vs mấy bn ơi đừng giải theo BĐT nhá

2 tháng 8 2019

Mấy cái này ko gọi là bđt thì gọi là cái gì @@ Chẳng lẽ là "không đẳng thức" :v

NV
27 tháng 4 2019

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!