\(\left(a+b\right)^{2011}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có a+b=9

=>(a+b)^2=81

=>(â-b)^2+4ab=81

=>(a-b)^2=80-4.20

=>(a-b)^2=80-81

=>(a-b)^2=(-1)

mà a<b nên a-b<0

=> a-b = -1

vậy (a-b)^2011 =(-1) ^ 2011=(-1)

19 tháng 8 2017

Ta có : \(a+b=9\Leftrightarrow a^2+b^2+2ab=81\Rightarrow a^2+b^2+40=81\)

\(\Rightarrow a^2+b^2=41\Rightarrow a^2+b^2-2ab=41-40=1\)

\(\Leftrightarrow\left(a-b\right)^2=1\Rightarrow a-b=-1\left(a< b\right)\)

\(\Rightarrow\left(a-b\right)^{2011}=-1^{2011}=-1\)

23 tháng 7 2018

a) mk chỉnh đề:

Chứng minh:  \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)   (1)

                hoặc   \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\) (2)

            BÀI LÀM

TH1:

\(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2=VP\)  (đpcm)

TH2:

\(VP=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2=VT\)  (đpcm)

b)  \(a+b=9\)\(\Rightarrow\)\(a=9-b\)

Ta có:  \(ab=20\)\(\Rightarrow\)\(\left(9-b\right).b=20\)

\(\Leftrightarrow\)\(b^2-9b+20=0\)

\(\Leftrightarrow\)\(\left(b-4\right)\left(b-5\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}b=4\\b=5\end{cases}}\)

Nếu  \(b=4\)thì:  \(a=5\)\(\Rightarrow\)\(\left(a-b\right)^{2011}=\left(5-4\right)^{2011}=1\)

Nếu  \(b=5\)thì  \(a=4\)\(\Rightarrow\)\(\left(a-b\right)^{2011}=\left(4-5\right)^{2011}=-1\)

23 tháng 7 2018

a, sửa đề CM: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)

\(VP=\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2=VT\left(đpcm\right)\)

b, \(a+b=9\Leftrightarrow\left(a+b\right)^2=81\Leftrightarrow\left(a-b\right)^2+4ab=81\Leftrightarrow\left(a-b\right)^2=81-4.20=1\Leftrightarrow a-b=\pm1\)

Với \(a-b=1\Rightarrow\left(a-b\right)^{2011}=1\)

Với \(a-b=-1\Rightarrow\left(a-b\right)^{2011}=-1\)

10 tháng 10 2018

ta có: a+b = 9

=> (a+b)2 = 81

a2 + 2ab + b2 = 81

=> a2 - 2ab + b2 + 4ab = 81

(a-b)2 + 4ab = 81

(a-b)2 + 80= 81

(a-b)2 = 1 = 12 = (-1)2

=> a-b = 1 hoặc a-b = -1

=> (a-b)2015 = 12015 = 1

(a-b)2015 = (-1)2015 = -1

KL:...

10 tháng 10 2018

a + b = 9 => ( a + b )2 = 81

=> a2 + 2ab + b2 = 81

=> a2 + 2.20 + b2 = 81

=> a2 + b2 + 40 = 81

=> a2 + b2 = 41

Xét ( a - b )2 = a2 - 2ab + b2 = ( a2 + b2 ) - 2 . 20 = 41 - 40 = 1

=> ( a - b )2 = 1

=> a - b = { 1; -1 }

mà a > b => a - b = 1

=> ( a - b )2015 = 12015 = 1

Vậy,......

25 tháng 8 2020

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow a^{2018}+b^{2018}+c^{2018}\ge\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)

Mà đẳng thức trên xảy ra dấu =

\(\Leftrightarrow a=b=c\Leftrightarrow P=0\)

Bài kia tí nghĩ nốt, khó v

26 tháng 8 2020

Sửa đề em nhé: \(\frac{2}{ab}-\frac{1}{c^2}=4\) và tính \(a+b+2c\)

Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ca}+4=4\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-c\\b=-c\end{cases}}\)\(\Leftrightarrow a+b+2c=0\)

13 tháng 12 2022

Bài 2:

\(A=\dfrac{x\left(x^3+1\right)}{x^2-x+1}-\dfrac{x\left(x^3-1\right)}{x^2+x+1}\)

\(=x\left(x+1\right)-x\left(x-1\right)\)

=x^2+x-x^2+x

=2x