Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu thứ 2
a - 5b chia hết cho 17 thì 10a-50b chia hết cho 17
10a-50b=10a+b-51b
51b chia hết cho 17 nên 10a+b chia hết cho 17
51a : 17
=> 51a - a + 5b : 17
=> 50a + 5b : 17
=> 5 ( 10a + b ) : 17
=> 10a + b : 17
a; CM (2a + 6) ⋮ 2
Ta có: 2a + 6 = 2.(a + 3) ⋮ 2 \(\forall\) a(đpcm)
b; (9a + 27b) ⋮ 9
Ta có: 9a + 27b = 9(a + 3b) ⋮ 9 \(\forall\) a; b
c; CM : (2a + 4b + 1) không chia hết cho 2
Ta có: 2a +4b + 1 = 2(a + 2b) + 1
Vì 2.(a + 2b) ⋮ 2 mà 1 không chia hết cho 2 nên
(2a + 4b + 1) không chia hết cho 2 (đpcm)
d; CM : (5a + 15b + 3) không chia hết cho 5
Ta có: 5a + 15b + 3 = (5a+ 15b) + 3 = 5.(a + 3b) + 3
Vì 5.(a + 3b) ⋮ 5 mà 3 không chia hết cho 5 nên
(5a + 15b + 3) không chia hết cho 5 (đpcm)
2a+5b chia hết cho 7
=>6a+15b chia hết cho 7 (1)
ta có : nếu giả sử 3a+4b chia hết cho 7
=>6a+8b chia hết cho 7 (2)
Trừ (1) cho (2) ta được (6a+15b)-(6a+8b)=7b chia hết cho 7
Suy ra 3a+4b chia hết cho 7
Ta có:
( 9 a + 12 b ) - ( 2a + 5b ) = 7a + 7b = 7 (a + b ) chia hết cho 7
mà ( 2a + 5b ) chia hết cho 7
=> 9a + 12 b chia hết cho 7
=> 3 ( 3a + 4b ) chia hết cho 7
=> ( 3a + 4b ) chia hết cho 7
ta có: a+4b \(⋮\)7
=> 3a +12b \(⋮\)7
=>(3a+5b)+7b \(⋮\)7
=> 3a+5b \(⋮\)7 ( vì 7b \(⋮\)7 )
vậy 3a+5b \(⋮\)7(đpcm)
k cho mình nha bạn!!!><
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
a+5b chia hết cho 9 nên suy ra: a chia hết cho 9 và 5b cũng chia hết cho 9
Vì 5b chia hết cho 9 nên b chắc chắn phải chia hết cho 9. Ta có:
a chia hết cho 9 suy ra 2a chia hết cho 9.
b chia hết cho 9 suy ra 4b chia hết cho 9.
2 số đều chia hết cho 9 thì suy ra hiệu của chũng cũng chia hết cho 9.
Vậy 2a-4b chia hết cho 9.