Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4.\left(1+4+4^2\right)+4^4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)(24 số hạng,chia làm 6 nhóm,mỗi nhóm 3 số từ trái sang phải)
\(A=21.\left(4+4^4+...+4^{22}\right)\)
Vậy A chia hết cho 21.
Học tốt^^
\(A=4.\left(1+4+4^2\right)+4^4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)(24 số hạng,chia làm 6 nhóm,mỗi nhóm 3 số từ trái sang phải)
\(A=21.\left(4+4^4+...+4^{22}\right)\)
Vậy A chia hết cho 21.
Học tốt^^
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Tôi là người phân phối chương trình xin hợp tác cùng chương trình học tập trực tuyến số 1 VN. Là Lazi nha mọi người khuyến mãi cho thành viên hoạt động đã xem nha
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
A=4+42+43+44+.........+423+424
A=(4+42)+(43+44)+........+(423+424)
A=4.(1+2)+43.(1+2)+......+423.(1+2)
A=4.3+43.3+......+423.3
A=3.(4+43+.....+423) \(⋮\)20;21;420
Nghĩ vậy thôi ,sai thì thôi nhé bn!
\(S=4+4^2+4^3+...+4^{23}+4^{24}\)
Nhận thấy : Dãy S có 24 số hạng nên khi ta nhóm 2 số hoặc 3 số thành 1 nhóm thì vừa đủ không dư ra số nào.
Ta có :
\(S=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\\ =20+4^2\left(4+4^2\right)+...+4^{22}\left(4+4^2\right)\\ =20+4^2.20+...+4^{22}.20\\ =20.\left(1+4^2+...+4^{22}\right)⋮20\)
\(S=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{22}+4^{23}+4^{24}\right)\\ =84+4^3.\left(4+4^2+4^3\right)+...+4^{21}.\left(4+4^2+4^3\right)\\ =84+4^3.84+...+4^{21}.84\\ =84.\left(1+4^3+...+4^{21}\right)\\ =12.7.\left(1+4^3+...+4^{21}\right)⋮12\)
\(S=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{22}+4^{23}+4^{24}\right)\\ =4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{22}\left(1+4+4^2\right)\\ =4.21+4^4.21+...+4^{22}.21\\ =21.\left(4+4^4+...+4^{22}\right)⋮21\)
Ta có:
A = 4 + 42 + 43 +......+ 423+ 424
= (4 + 42)) + (43 +44)......+ (423+ 424)
=(4 + 42).1+(4 + 42).42+...+(4 + 42).422
=20.(1+42+...+422) chia hết cho 20
Ta lại có:
A = 4 + 42 + 43 +......+ 423+ 424
=(4 + 42 + 43)+...+(422+423+424)
=(4 + 42 + 43).1+...+(4 + 42 + 43).421
=21.(1+...+421) chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420
Vậy...
A = 4 + 42 + 43 +......+ 423+ 424
Ta thấy các cặp số liên tiếp cộng lại với nhau đều chia hết cho 20, ví dụ:
4 + 42 = 20, 43 + 44 = 320, 45 + 46 = 5120...
Vì đây là số chẵn, nên A sẽ chia hết cho 20.
Tiếp tục, BC (21 và 4) = {84; 168; 252; 336; 420; 504; 588....}
Như vậy, ta để ý thấy tích của các lũy thừa gồm số 4 và số mũ đều là số chẵn, BC của 4 và 21 cũng đều là số chẵn.
Vậy A chia hết cho 21.
Song, vì A chia hết cho 20 và 21, trong trường hợp này A chỉ có thể chia hết cho 20.21 = 420
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(A=4\left(1+4+4^2\right)+...+4^{22}\left(1+4+4^2\right)\)
\(A=4.21+...+4^{22}.21⋮21\)
A=4+4^2+4^3+...++4^23+4^24
A=(4+4^2+4^3)+...+(4^22+4^23+4^24)
A=4.(4^0+4^1+4^2)+...+4^22.(4^0+4^1+4^2)
A=4.21+......+4^22.21
A=(4+...+4^22).21
Vì 21 chia hết cho 21 nên (4+...+4^22).21 chia hết cho 21
Suy ra A chia hết cho 21
\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)
\(A=20.1+20.2^4+.......+20.2^{24}\)
\(A=20.\left(1+2^4+..........+2^{24}\right)\)
Vậy A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)
\(A=4.21+4^4.21+......+4^{20}.21\)
\(A=21.\left(1+4^4+......+4^{20}\right)\)
Vậy A chia hết cho 21
\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)
\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)
Vậy A chia hết cho 420
\(A=4+4^2+4^3+4^4+...+4^{24}\)
\(A=\left(4+4^2\right)+\left(4^3+4^4\right)+....+\left(4^{23}+4^{24}\right)\)
\(A=20+4^2\left(4+4^2\right)+....+4^{22}.\left(4+4^2\right)\)
\(A=20+4^2.20+...+4^{22}.20\)
\(A=20.\left(1+4^2+...+4^{22}\right)⋮20\)
\(A=4\left(1+4+4^2\right)+...+4^{22}\left(1+4+4^2\right)\)
\(=20\left(1+...+4^{22}\right)⋮20\)
Chứng minh 21 chia hết cho A
A= 4+4^2+4^3+...+4^60