Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=32+33+......+3101
3A-A=3101-3
A=3101-2:2
2A+3=3n
2x3101-3:2+3=3n
3101-3+3=3n
3101=3n
n=101
3A=32+33+......+3101
3A-A=3101-3
A=3101-2:2
2A+3=3n
2x3101-3:2+3=3n
3101-3+3=3n
3101=3n
n=101
A=3+3^2+3^3+..........+3^99+3^100
3A=3^2+3^3+...............+3^100+3^101
=> 3A-A= (3^2+3^3+......+3^100+3^101) - (3+3^2+3^3+........+3^99+3^100)
=> 2A= 3^101 - 3
=>2A+3=3^101
=>3^n=3^101
=> n=101
Ta có:
\(A=3+3^2+3^3+...+3^{99}+3^{100}\)
\(2A=3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(2A-A=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+...+3^{99}+3^{100}\right)\)\(A=3^{101}-3\)
\(2A+3=3^{101}-3+3=3^{101}=3^n\)
\(n=101\)
ban bam vao muc cau hoi tuong tu se co day mih vua xem xong
ta có A=1+3+32+33+......+399+3100
=>3A= 3+32+33+34+......+3100+3101
- A=1+3+32+33+.......+399+3100
=> 2A=3101-1 mà 2A+1=3n =>3101-1+1
=> 3101-3n
=> n= 101
k cho mik nha!
Ta có 3A= \(^{3^2+3^3+3^4+...+3^{100}}\)
3A-A=2A= (\(3^2+3^3+3^4+...+3^{100}\))-(\(3+3^2+3^3+...+3^{99}\))
2A= \(3^{100}-3\)
theo bài ra ta có
2A+3=\(3^n\)= \(3^{100}-3+3=3^n\)=\(^{3^{100}}\)\(\Rightarrow\)n=100
3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
Ta có: A=3+32+33+...+3100
=> 3A=32+33+34+...+3100+3101
=>3A-A=32+33+34+...+3100+3101-(3+32+33+...+3100)
=> 2A=3101-3
=>2A+3=3101
Lại có: 2A+3=3n
=> 2A+3=3101=3n
=> 3101=3n
=> 101=n
Vậy n=101
a=3+32+33+....+3100
=>3a=32+33+....+3101
=>3a-a=32+33+....+3101 -(3+32+33+....+3100)
=>2a=32+33+....+3101-3-32-33-...-3100
=>2a=3101-3
=>2a+3=3101
mà theo đề 2a+3=3n
=>n=101
vậy n=101
A=3+32+33+...+399
3A=32+33+...+3100
3A-A=(32+33+...+3100)-(3+32+33+...+399)
2A=3100-3
2A+3=3100
⇒n=100
Đây nè bạn, chúc bạn học tốt :))
A = 3 + 32 + 33+ ... + 399
3A = 3. (3 + 32 + 33+ ... + 399)
3A \(=3^2+3^3+3^4+...+3^{100}\)
3A \(=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{99}\right)\)
2A\(=3^{100}-3\)
Vậy, sau khi tìm đc 2A, ta tìm stn n nha:
2A + 3 = 3n
\(=3^{100}-3+3=3^n\)
⇒\(3^{100}=3^n\)(Vì -3 +3 = 0)
Vậy n = 100