Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\)
=> 5A = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)
=> 5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}\right)\)
=> 4A \(=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
=> 20A = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}\)
Lấy 20A trừ A ta có :
20A - A = \(\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}\right)\)
16A = \(1-\frac{99}{5^{99}}+\frac{99}{5^{100}}=1+99\left(\frac{1}{5^{100}}-\frac{1}{5^{99}}\right)=1-\frac{99.4}{5^{100}}\)
=> A = \(\frac{1}{16}-\frac{99}{4.5^{100}}< \frac{1}{16}\left(\text{ĐPCM}\right)\)
Ta có :A=\(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{99}{5^{100}}\)
5A=\(\frac{1}{5}+\frac{2}{5^2}+.....+\frac{99}{5^{99}}\)
5A -A=\(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{99}{5^{99}}\right)\)-\(\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{99}{5^{100}}\right)\)
4A =\(\frac{1}{5}+\frac{1}{5^2}+....+\frac{1}{5^{99}}-\frac{99}{5^{100}}\)
Đặt B=\(\frac{1}{5}+\frac{1}{5^2}+.....+\frac{1}{5^{99}}\)
5B=\(1+\frac{1}{5}+...+\frac{1}{5^{98}}\)
5B - B =\(\left(1+\frac{1}{5}+...+\frac{1}{5^{98}}\right)\)- \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)\)
4B =\(1-\frac{1}{5^{99}}\)
Ta có :4A = B -\(\frac{99}{5^{100}}\)
16A = 4B -\(\frac{4.99}{5^{100}}\)=\(1-\frac{1}{5^{99}}-\frac{4.99}{5^{100}}\)
A = \(\frac{1}{16}-\frac{1}{5^{99}.16}-\frac{99}{5^{100}.4}\)< \(\frac{1}{16}\)
Suy ra: A <\(\frac{1}{16}\)
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{303}{3^{100}}+\frac{100}{3^{100}}\)
\(4A=3-\frac{203}{3^{100}}< 3\)
\(A< \frac{3}{4}\)
\(A=1+4+4^2+...+4^{99}\)(1)
=>\(4A=4+4^2+4^3+...+4^{100}\)(2)
Lấy (2)-(1) ta được
3A=4100-1
=>A=\(\frac{4^{100}-1}{3}<\frac{4^{100}}{3}=B\)
=>A<B (đpcm)
4A=4+4^2+4^3+...+4^100
4A-A=4+4^2+4^3+..+4^100-1-4-4^2-...-4^99
3A=4^100-1=>3A<4^100=>A<4^100/3