K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

A x 3 = 3 + 3+ 33+... + 312

A x 3 - A = 312 - 1

A x 2 = 312 - 1 = 531441 - 1 = 531440

A = 531440 : 2 = 265720

vậy A chia hết cho 5 và tận cùng của A bằng 0

7 tháng 5 2018

a) = (1+3+32+33)+...+(38+39+310+311)

= (1+3+32+33)+(1.34....38)

=(1+3+32+33)+(1.34....38)

=40 +( 1.34.....38)

Vì 40 chia hết cho 5 => 40 + (1.34....38)

=> A chia hết cho 5

4 tháng 1 2017

giải dài lắm bạn ơi,mik làm câu b thui nhé

S = 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203

S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) x 3

Sx 3 = 3 + 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 203 + 3 ^ 204

S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) + 3 ^ 204 - 1

S x3 = S + 3 ^ 204 - 1

S x 2 = 3 ^ 204 - 1 ( cũng bớt cả 2 vế đi S )

S = 3 ^ 204 - 1 : 2

S = 3 ^ 4 x 51 - 1 : 2

S = (3^4) ^ 51 - 1 : 2

S = 81 ^ 51 - 1 : 2

Vì 81  ^ 51 luôn có t/c = 1 ( do số có t/c =1 khi nâng lên bất kì lũy thừa nào đều có t/c = 1)

=> 81 ^ 51 - 1 co t/c = 0

=> 81 ^ 51 - 1 : 2 co t/c = 5

Hay S có t/c = 5

Vay S co t/c =5

Ung ho nha

2 tháng 12 2017

a) Ta có: \(A=4+4^2+4^3+....+4^{24}\)

\(\Rightarrow A=\left(4+4^2+4^3\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)

\(\Rightarrow A=4.\left(1+4+4^2\right)+....+4^{22}.\left(1+4+4^2\right)\)

\(\Rightarrow A=21.\left(4+....+4^{22}\right)⋮21\)

Vậy \(A⋮21\)

b) Tự làm

12 tháng 4 2018

a, TC:N=1+3+3^2+3^3+...+3^50+3^51

            =(1+3)+(3^2+3^3)+...+(3^50+3^51)

            =4+3^2.4+...+3^50.4

            =4(1+3^2+...+3^50) chia hết cho 4

=>DCPCM

c, N=1+3+3^2+3^3+...+3^50+3^51

  3N=3+3^2+3^3+...+3^51+3^52

=>3N-N=3^52-1

=>2N=3^52-1

=>N=(3^52-1):2

29 tháng 9 2018

a) \(S=1+3+3^2+3^3+...+3^{49}\)

\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)

\(=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)

\(=1.4+3^2.4+...+3^{48}.4\)

\(=\left(3+1\right)\left(1+3^2+...3^{48}\right)=4\left(1+3^2+...+3^{48}\right)⋮4^{\left(đpcm\right)}\)

b) Ta có: \(S=1+3+3^2+3^3+...+3^{49}\)

\(3S=3+3^2+3^3+...+3^{49}+3^{50}\)

\(3S-S=2S=3^{50}-1\Rightarrow S=\frac{3^{50}-1}{2}\)

Ta thấy: \(3^{50}=3^{4.12}.3^2=\left(3^4\right)^{12}.3^2=81^{12}.9=...9\) (tận cùng là 9)

Suy ra \(3^{50}-1=\left(...9\right)-1=...8\) (tận cùng là 8)

Suy ra \(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{\left(...8\right)}{2}=...4\Rightarrow S\) tận cùng là 4

24 tháng 10 2018

a) \(S=1+3+3^2+3^3+...+3^{49}\)

\(S=\left(1+3\right)+\left(3^2+3^3\right)+....+\left(3^{48}+3^{49}\right)\)

\(S=4+\left(3^2.1+3^2.3\right)+....+\left(3^{48}.1+3^{48}.3\right)\)

\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)

\(S=1.4+3^2.4+...+3^{48}.4\)

\(S=\left(1+3^2+...+3^{48}\right).4⋮4\)

7 tháng 11 2015

Câu a và câu b bài 2 xem Câu hỏi tương tự 
Bài 2 câu c : 
Do A chia hết cho 2 và 5 ( chai hết cho 15 tức là chia hết cho 5 ) 
Mà chia hết cho cả 2 và 5 thì có số tận cùng là 0 
=> Số tận cùng của A = 0. 
Bài 1 để nghiên cứu

11 tháng 12 2016

Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa

21 tháng 10 2019

Ta có:

A=2 + 22 + 2+...+ 2100

=>2A=22 + 2+...+ 2101

=>2A-A=(22 + 2+...+ 2101)-(2+22+...+2100)

=>A=2101-2

23 tháng 10 2019

em không hiểu anh làm câu b chưa