\(4a^2+25b^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Đặt \(x=2a;y=-5b\)

Áp dụng BĐT Bunhiacôpxki ta có:

\(\left(x^2+y^2\right)\left(9+1\right)\ge\left(3x+y\right)^2\)

\(\Leftrightarrow x^2+y^2\ge\frac{\left(3x+y\right)^2}{10}=\frac{\left(6a-5b\right)^2}{10}=\frac{1}{10}\)

Dấu "=" xảy ra khi \(\frac{3}{x}=\frac{1}{y}\Leftrightarrow\hept{\begin{cases}a=\frac{3}{20}\\b=\frac{-1}{50}\end{cases}}\)

Vậy GTNN của \(4a^2+25b^2=\frac{1}{10}\) tại \(\Leftrightarrow\hept{\begin{cases}a=\frac{3}{20}\\b=\frac{-1}{50}\end{cases}}\)

AH
Akai Haruma
Giáo viên
31 tháng 3 2018

Lời giải:

Ta có: \(6a-5b=1\Leftrightarrow 6a=1+5b\)

Thay vào biểu thức M ta có:

\(M=4a^2+5b^2=4\left(\frac{1+5b}{6}\right)^2+5b^2\)

\(\Leftrightarrow 9M=(5b+1)^2+45b^2\)

\(9M=25b^2+1+10b+45b^2=70b^2+10b+1\)

\(9M=(\sqrt{70}b+\frac{5}{\sqrt{70}})^2+\frac{9}{14}\)

Ta có: \((\sqrt{70}b+\frac{5}{\sqrt{70}})^2\geq 0, \forall b\in\mathbb{R}\)

\(\Rightarrow 9M\geq \frac{9}{14}\Leftrightarrow M\geq \frac{1}{14}\)

Vậy \(M_{\min}=\frac{1}{14}\)

Dấu bằng xảy ra khi \(b=-\frac{1}{14}; a=\frac{3}{28}\)

29 tháng 7 2019

heyzo tv

30 tháng 7 2019

ủa cháu ghi lộn thành lớp 1, sự thật là cháu lớp 4 ròi    ahihi  :D

26 tháng 6 2016

1) \(a^3+2a^2-13a+10=a^3-a^2+3a^2-3a-10a+10=\)

\(=a^2\left(a-1\right)+3a\left(a-1\right)-10\left(a-1\right)=\left(a-1\right)\left(a^2+3a-10\right)\)

\(=\left(a-1\right)\left(a^2-2a+5a-10\right)=\left(a-1\right)\left[a\left(a-2\right)+5\left(a-2\right)\right]=\)

\(=\left(a-1\right)\left(a-2\right)\left(a+5\right)\)

b) \(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2=\left(a^2+4b^2-5+4ab+4\right)\left(a^2+4b^2-5-4ab-4\right)\)

\(=\left(a^2+4ab+4b^2-1\right)\left(a^2-4ab+4b^2-9\right)=\left[\left(a+2b\right)^2-1\right]\left[\left(a-2b\right)^2-9\right]=\)

\(=\left(a+2b+1\right)\left(a+2b-1\right)\left(a-2b+3\right)\left(a-2b-3\right)\)

2) \(6a-5b=1\Rightarrow5b=6a-1\Rightarrow25b^2=36a^2-12a+1\)

\(\Rightarrow4a^2+25b^2=40a^2-12a+1=40\left(a^2-2\cdot a\cdot\frac{3}{20}+\left(\frac{3}{20}\right)^2\right)+1-\frac{9}{10}\)

\(=40\left(a-\frac{3}{20}\right)^2+\frac{1}{10}\)

Vậy GTNN của \(4a^2+25b^2\)= 1/10. Xảy ra khi a = 3/20 và b = -1/50.

NV
16 tháng 9 2020

Đặt \(\left(4a;5b;-6c\right)=\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x+y+z=-5\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+y+z\right)^2=25\\\frac{xy+yz+zx}{xyz}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=25\\xy+yz+zx=0\end{matrix}\right.\)

\(\Rightarrow x^2+y^2+z^2=25\) hay \(16a^2+25b^2+36c^2=25\)

15 tháng 2 2017

c/ Ta có:\(6a-5b=1\)

\(\Rightarrow5b=6a-1\)

Theo đề thì: \(A=4a^2+\left(6a-1\right)^2=40a^2-12a+1\)

\(=\left(\left(2\sqrt{10}a\right)^2-\frac{2.2.\sqrt{10}.3a}{\sqrt{10}}+\frac{9}{10}\right)+\frac{1}{10}\)

\(=\left(2\sqrt{10}a-\frac{3}{\sqrt{10}}\right)^2+\frac{1}{10}\ge\frac{1}{10}\)

15 tháng 2 2017

còn câu a,b nữa a ơi :((

28 tháng 1 2019

Đặt x = 2a; y = -5b.

Áp dụng đẳng thức Bunhiacopski ta có:

\(\left(3x+y\right)^2\le\left(x^2+y^2\right)\left(9+1\right)\Rightarrow x^2+y^2\ge\frac{1}{10}\)

Hay: \(4a^2+25b^2\ge\frac{1}{10}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{1}{y}\Leftrightarrow3y=x\Leftrightarrow-15b=2a\Leftrightarrow6a=-45b\)

\(\Leftrightarrow b=-\frac{1}{50};a=\frac{3}{20}\)

11 tháng 2 2018

Bạn rút ra \(2a=\frac{5b+1}{3}\)

Sau đó thế vào \(4a^2+25b^2=\left(2a\right)^2+\left(5b\right)^2\)

Được : \(\frac{50b^2+10b+1}{9}=\frac{2\left[\left(5b^2\right)+5b\right]+1}{9}\)

=\(\frac{2\left[\left(5b^2\right)+2\cdot\frac{5}{2}b^{ }+\frac{25}{4}-\frac{25}{4}\right]+1}{9}\)

=\(\frac{2\left[5b+\frac{25}{2}\right]^2-\frac{23}{2}}{9}\ge\frac{-\frac{23}{2}}{9}=\frac{-23}{18}\)

Dấu = khi b=-5/2 và a=-23/12

15 tháng 11 2016

Ta có : \(6a^2+ab=25b^2\) 

Vì a,b > 0 nên chia cả hai vế cho a2 được : \(6+\frac{b}{a}=\frac{25b^2}{a^2}\)

Đặt \(t=\frac{b}{a}\) thì ta có \(25t^2-t-6=0\Leftrightarrow\orbr{\begin{cases}t=\frac{1+\sqrt{601}}{50}\\t=\frac{1-\sqrt{601}}{50}\end{cases}}\)

Tới đây bạn suy ra tỉ số giữa a và b rồi thay vào tính M nhé!